
Motor a reacción nuclear General Electric HTRE-3
Richard Hargreaves-Miller || Plane Historia
En 1951, el ejército de EE. UU. lanzó un programa para desarrollar un avión propulsado por energía nuclear, capaz teóricamente de volar indefinidamente sin repostar. El concepto innovador consistía en motores a reacción calentados no por combustión química, sino por un reactor nuclear de altísima temperatura.
Este ambicioso programa involucró a instituciones de todo el país, como el Oak Ridge National Laboratory (ORNL), que trabajaba en reactores de combustible líquido, y el National Reactor Testing Station (NRTS, hoy Idaho National Lab), donde se experimentaba con reactores de combustible sólido refrigerados por aire.
Las pruebas en Idaho, conocidas como Heat Transfer Reactor Experiments (HTRE), se desarrollaron en tres versiones: HTRE-1, HTRE-2 (una versión reconfigurada del primero) y HTRE-3, que fue un diseño completamente nuevo. Estas pruebas fueron esenciales para evaluar la viabilidad de usar reactores nucleares para impulsar motores a reacción.
Contexto
Tras presenciar el poder del átomo en Hiroshima y Nagasaki, EE. UU. buscó aplicaciones tanto pacíficas como militares de la energía nuclear. Una motivación clave era lograr una capacidad estratégica de bombardeo de largo alcance, vital para mantener la influencia militar global.
En 1946, la Fuerza Aérea y la Comisión de Energía Atómica (AEC) lanzaron el programa ANP (Aircraft Nuclear Propulsion), con el objetivo de desarrollar bombarderos nucleares capaces de permanecer en el aire durante semanas, funcionando como disuasión contra la Unión Soviética. Además de las ventajas estratégicas, se buscaba superar las limitaciones de alcance de los bombarderos tradicionales, dependientes del combustible y el repostaje frecuente.
Desarrollo de la serie HTRE
General Electric lideró el desarrollo de la serie HTRE, enfrentando desafíos como la integración segura del reactor en los sistemas de propulsión.
El HTRE-1 fue la primera prueba para evaluar la viabilidad básica de calentar aire con un reactor nuclear. Después de obtener datos iniciales, el HTRE-2 introdujo mejoras en el diseño del reactor, la gestión del calor y los materiales, además de soluciones avanzadas de blindaje contra radiación.
Finalmente, el HTRE-3 representó el esfuerzo más avanzado, integrando un reactor compacto y eficiente con un motor turbojet modificado General Electric J47. Este motor usaba un ciclo directo: el aire pasaba a través del núcleo del reactor, se calentaba mediante fisión nuclear y se expulsaba para generar empuje, eliminando la necesidad de combustión convencional.
El diseño incorporaba sofisticados sistemas de blindaje para proteger a la tripulación de rayos gamma y neutrones, usando materiales como plomo, parafina y compuestos de boro. Además, incluía avanzados sistemas térmicos para disipar el exceso de calor no convertido en empuje, evitando daños al motor y la aeronave.
Pruebas
Las pruebas del HTRE-3 se realizaron principalmente en el National Reactor Testing Station en Idaho, donde se evaluó la capacidad del reactor para calentar aire a las temperaturas necesarias para generar empuje. Se midieron niveles de radiación, rendimiento térmico y comportamiento estructural bajo condiciones de calor extremo y radiación.
HTRE-2, a la izquierda, y HTRE-3, a la derecha, en exhibición en las instalaciones del Experimental Breeder Reactor I.
Si bien las pruebas demostraron que el concepto de propulsión nuclear directa era técnicamente viable, surgieron importantes desafíos: el enorme peso del reactor y su blindaje afectaba el rendimiento del avión, y la complejidad de operar un reactor en vuelo planteaba riesgos operativos significativos.
El sistema de transferencia de calor siendo cargado en la bodega de bombas del Convair NB-36H.
Cancelación del programa
A pesar del fuerte apoyo militar y de décadas de inversión (casi mil millones de dólares), el programa fue cancelado el 26 de marzo de 1961 por el presidente Kennedy. Las razones incluyeron los altísimos costos, la falta de un reactor apto para vuelo y, sobre todo, el surgimiento de misiles balísticos intercontinentales, que redujeron drásticamente la necesidad estratégica de bombarderos nucleares.
Edificio del Aircraft Reactor Experiment en el Oak Ridge National Laboratory.
Sin embargo, los conocimientos obtenidos inspiraron nuevos proyectos, como el Molten-Salt Reactor Experiment (MSRE), dirigido por ORNL, que exploró el uso civil de la tecnología de reactores de sal fundida.
Convair X-6, un proyecto experimental propuesto para desarrollar y evaluar un avión a reacción propulsado por energía nuclear, diseñado para ser impulsado por 4 turborreactores nucleares J53 y 6 hélices.