Mostrando entradas con la etiqueta SAM de largo alcance. Mostrar todas las entradas
Mostrando entradas con la etiqueta SAM de largo alcance. Mostrar todas las entradas

martes, 17 de junio de 2025

Estación de control: Sitio 512 (Israel)

Sitio 512

 

"Sitio 512" en el desierto israelí del Néguev, operado por EE.UU., para el seguimiento de misiles balísticos iraníes | Israel | 2025




El "Sitio 512" es una instalación de seguimiento y alerta de largo alcance para misiles balísticos, ubicada en la cima del monte Qeren (altitud 365 metros), en el desierto del Néguev, en el sur de Israel, con coordenadas geográficas 30.996163775618687, 34.49649843595818, referencia: Google Maps.



Construido y operado bajo la órbita del Departamento de Defensa (DoD) de los Estados Unidos, cuenta con un sistema de radar digital transportable AN/TPY-2, que opera en la Banda-X (8,55–10 GHz, con una longitud de onda de 3 cm), con una capacidad de detección de hasta 3.000 km. Este radar fue desarrollado originalmente por EE.UU. para integrarse al sistema de defensa antimisiles THAAD ("Terminal High Altitude Area Defense").

Al igual que su contraparte en Catar —también situada en un entorno desértico, coordenadas 24.511829051806657, 51.133523878454824, referencia: Google Maps—, el módulo de antena del radar AN/TPY-2, que genera temperaturas de operación muy altas, está parcialmente protegido del sol por una estructura tipo hangar. Dado su arco operativo de 120 grados, está orientado hacia la fuente potencial de amenaza: en el caso de Catar, hacia el suroeste (SW), apuntando hacia Yemen, y en el caso de Israel, hacia el noreste (NE), en dirección a Irán.

El módulo de antena del AN/TPY-2 mide 12,8 metros de largo, 2,6 metros de alto y pesa 34 toneladas. Se complementa, además de con la unidad de operación, con módulos transportables de generación de energía, refrigeración y control electrónico. Todo el conjunto puede ser remolcado por vehículos pesados como el HEMTT (Heavy Expanded Mobility Tactical Truck) M983, y también puede ser transportado por avión, por ejemplo en un C-17 Globemaster III o un C-5 Galaxy. Entró en servicio originalmente con el Ejército de los Estados Unidos en 2004.

En el teatro de operaciones israelí, esta instalación representa un activo estratégico para el seguimiento de misiles balísticos lanzados desde Irán hacia Israel. Funciona de manera integrada con los sistemas de información de las plataformas antiaéreas de las Fuerzas de Defensa de Israel (FDI), especialmente el sistema "Arrow" ("חֵץ", "Flecha"), que incluye misiles capaces de interceptar misiles balísticos en la alta atmósfera ("Arrow 2") o incluso fuera de la atmósfera ("Arrow 3"); y con el sistema "Honda de David" ("קלע דוד", "David's Sling"), que utiliza interceptores "Stunner", diseñados para enfrentar amenazas balísticas de corto alcance.

El "Sitio 512" fue construido entre 2008 y 2009, y se amplió en 2017 y 2023 (aumentando su capacidad de alojamiento y soporte). El radar está bajo el soporte de la 1.ª Brigada Espacial del Comando de Defensa Espacial y Antimisiles del Ejército de EE.UU. (USASMDC), y operado por la 13.ª Batería de Defensa Antimisiles del 5.º Batallón de la 52.ª Brigada de Artillería Antiaérea (52 ADA), dependiente del 10º Comando Aéreo y de Defensa Antimisiles del Ejército de EE.UU. (AAMDC). Tiene capacidad para alojar a unas 1.000 personas, aunque actualmente opera con un personal aproximado de 300 efectivos. Funciona bajo el mismo esquema que otras instalaciones similares en Japón (Shariki y Kyogamisaki), Corea del Sur (Seongju), Catar (Al Wakrah) y Turquía ("Sitio K", en Kürecik).

Ortofotomapa del monte Qeren editado y anotado vía Google Maps por "Espada & Escudo". Modelo de referencia del AN/TPY-2 vía 3D Molier International.

jueves, 12 de junio de 2025

Proyección de poder aéreo: La posibilidad de ataques aéreos chinos desde el espacio

Avión cohete chino ataca prácticamente desde el espacio: es muy posible

Roman Skomorokhov || Revista Militar




 
El 26 de diciembre de 2024, China sorprendió al mundo al lanzar al aire no uno, sino dos nuevos prototipos de cazas que encarnan su visión de los sistemas aéreos de próxima generación: el Chengdu J-36 y el Shenyang J-XX/J-50.


 

A través de una cadena de filtraciones cuidadosamente dosificadas —porque, seamos sinceros, si alguien sabe guardar secretos militares, es el Imperio Celestial—, China ha dejado entrever una jugada que nadie vio venir. Dos aeronaves, completamente nuevas, salieron a la luz: un enorme avión sin cola y con ala en forma de diamante, identificado como J-36 (fuselaje número 36011), fabricado por Chengdu, y otro de menor tamaño —aunque igualmente imponente— de ala lambda, desarrollado por Shenyang, conocido de forma extraoficial como J-XX o J-50.

Que China estuviera trabajando en su propia visión de un sistema de combate aéreo de sexta generación era un secreto a voces. Pero nadie esperaba que dieran este paso tan pronto. Y mucho menos, que lo hicieran con semejante contundencia.

Primero, porque todos asumían que Estados Unidos marcaría el rumbo en este terreno. Su programa NGAD (Next Generation Air Dominance) había dominado el discurso sobre los cazas del futuro, y parecía cuestión de tiempo hasta que los norteamericanos se llevaran el primer aplauso. Pero China se adelantó.

Segundo, porque no se trató de una única plataforma experimental. China reveló dos programas distintos, desarrollados por dos fabricantes competidores, que avanzan en paralelo en investigación, desarrollo y producción. Chengdu y Shenyang, ambos trabajando al unísono, pero por caminos separados, hacia una misma meta: redefinir el dominio aéreo.

Y así, de un momento a otro, China no solo presentó su primer caza de sexta generación. Presentó también el segundo. Con apenas unas horas de diferencia.

No hay otra forma de decirlo: 2025 arrancó con China en el centro del escenario de la aviación militar global. Mientras otros hablaban del futuro, ellos lo pusieron a rodar por la pista.




Hoy, todas las miradas están puestas en una sola silueta: la del Chengdu J-36. No porque sepamos exactamente qué es —todo lo contrario—, sino porque lo que rodea a esta máquina está envuelto en una neblina de misterio, lo que, en tiempos como estos, es casi una invitación a imaginar. Diseño, capacidades, propósito… el J-36, creación inesperada de Chengdu Aerospace Corporation (CAC), nos deja espacio para especular, y eso lo hace aún más fascinante.

Lo que sí se ha filtrado —en fotos y videos cuidadosamente controlados— revela un avión con diseño de ala en diamante, sin superficies de cola. Un auténtico “ala volante” futurista. En sus primeras apariciones, el J-36 estaba propulsado por dos motores turbofán, pero luego surgieron imágenes que mostraban un tercer motor, algo que abrió una cascada de preguntas.

En cuanto a su tamaño, el J-36 es considerablemente más grande que el ya imponente J-20, también desarrollado por Chengdu. Algunos analistas estiman una longitud de 23 metros y una envergadura de 19,2 metros, lo que lo ubica por encima del J-20, que mide 20,3 m de largo con una envergadura de 12,88 m. A partir de eso, se proyecta un peso máximo al despegue (MTOW) de entre 50 y 60 toneladas.

¿Y qué clase de caza necesita ese tonelaje? Para ponerlo en contexto, el Su-34 ruso, que es más un bombardero táctico que un caza puro, tiene un peso bruto al despegue de 45 toneladas. Y aquí estamos hablando de un supuesto caza de superioridad aérea, con una masa comparable —o incluso superior— a la de un bombardero pesado.

Y no olvidemos los tres motores. Una decisión que ha generado tanto desconcierto como teorías. Algunos apuntan a la falta de empuje suficiente de los propulsores chinos más avanzados, como los WS-15, que, según datos disponibles, generan unos 16.000 kgf de empuje cada uno. En comparación, los motores del Su-34 —AL-31F-M1— entregan alrededor de 13.000 kgf. Sobre el papel, los WS-15 superan esa cifra. Pero claro, está el eterno talón de Aquiles de la ingeniería china: la fiabilidad.

Si el J-36 necesitara realmente tres motores para alcanzar su rendimiento esperado, algo no cuadra con la idea de un caza ágil y maniobrable. Con dos WS-15 debería poder despegar… pero no necesariamente combatir con la agilidad que exige el dogfight moderno. Y sin maniobrabilidad, ¿sigue siendo un caza? O estamos, tal vez, ante un nuevo tipo de plataforma, más cercana a un bombardero sigiloso, un lanzador de armas hipersónicas, o incluso un nodo aéreo de guerra electrónica o control de enjambres.

Lo cierto es que, por ahora, el J-36 no despeja las dudas. Las multiplica.
Y eso lo hace aún más intrigante.


La elección de tres motores en el diseño del J-36 no es un simple capricho de ingeniería. Es, en muchos sentidos, una anomalía en el mundo de la aviación de combate moderna, donde la eficiencia, la maniobrabilidad y la reducción de peso mandan. Pero China, una vez más, parece estar jugando con sus propias reglas.

Una posibilidad es que Chengdu esté apostando al desarrollo definitivo del WS-15, el motor de quinta generación chino que promete empuje suficiente para mantener vuelo supersónico sostenido y mejorar radicalmente la relación empuje-peso. Pero lo interesante aquí no es solo el empuje. La adición de un tercer motor podría tener objetivos mucho más ambiciosos.

Más allá de mover una estructura pesada, tres motores significan también una enorme generación de energía eléctrica. Y eso podría ser la clave. Porque un caza de sexta generación no solo debe volar: debe ver más, procesar más, comunicarse más y defenderse más. Sistemas de guerra electrónica avanzados, sensores multifrecuencia, radares AESA, enlaces de datos de alta capacidad, e incluso armamento defensivo de nueva generación —como láseres de alta energía (HEL) o microondas de alta potencia (HPM)— requieren una cantidad colosal de energía y refrigeración.

Visto así, la configuración del J-36 parece mucho menos una rareza y mucho más una pieza central del concepto chino de guerra aérea del futuro. Un sistema de combate aéreo en red, donde el J-36 no es solo un avión de combate, sino el cerebro aéreo que coordina enjambres de UAVs, guía misiles inteligentes, y opera de forma autónoma junto a otras aeronaves, tripuladas o no.

Incluso si su rol se limitara únicamente a actuar como nodo de mando y control, el J-36 necesitaría una capacidad de procesamiento de datos y transmisión en tiempo real sin precedentes. Eso implica potencia bruta, capacidad de enfriamiento, redundancia, y arquitectura electrónica avanzada. Porque controlar un enjambre aéreo no es simplemente cuestión de presionar botones: es gestionar inteligencia, amenazas, objetivos, y trayectorias múltiples en fracciones de segundo.

Por eso, uno o dos motores quizá serían suficientes para una plataforma especializada en tareas limitadas, como el despliegue de drones. Pero China parece querer más: que cada J-36 sea un centro de mando volador, un sistema multirole de largo alcance, capaz de operar por sí solo o en conjunto, y hacer todo eso con autonomía operativa y sostenida.

Y en ese camino, no se descarta que futuras versiones del J-36 estén propulsadas por motores de ciclo variable (VCE), una tecnología emergente que permite que las turbinas operen a velocidades distintas según la necesidad. Esto no solo mejora la eficiencia del combustible, sino que permite gestionar de forma más inteligente el flujo de energía a los distintos subsistemas electrónicos del avión.

Con un peso estimado al despegue de entre 50 y 60 toneladas, el J-36 se sitúa en un terreno poco habitual para un caza. Esa envergadura se traduce en una enorme capacidad interna de combustible y espacios generosos para armamento, lo que le da alcance estratégico y capacidad de carga pesada.

Pero aquí surge la pregunta inevitable: ¿sigue siendo esto un caza? Porque todo en el J-36 —su tamaño, sus motores, su misión, sus sistemas— apunta más bien a una nueva categoría híbrida, algo entre caza, bombardero, centro de mando y lanzador estratégico.

Tal vez no estamos viendo el futuro de los cazas…
Sino el nacimiento de otra cosa completamente distinta.



Por ahora, todo lo que sabemos sobre el alcance y la capacidad de carga del J-36 está cubierto por una neblina de especulación. Pero, incluso en ausencia de cifras oficiales, hay pistas suficientes para armar el rompecabezas.

El objetivo estratégico parece claro: cubrir la primera cadena de islas —Japón, Taiwán, Filipinas e Indonesia— sin depender del reabastecimiento en vuelo. Para ello, el J-36 debería contar con un alcance significativo, lo bastante amplio como para entrar y salir del espacio aéreo hostil con autonomía plena. Y si se incorpora armamento de largo alcance, como misiles de crucero o armas aire-superficie de precisión, el radio de acción se extendería hasta la segunda cadena de islas, abarcando buena parte del sudeste asiático.

En cuanto a su carga útil, se espera que el J-36 esté equipado con una bahía interna de grandes dimensiones, capaz de alojar una variada gama de municiones. Entre ellas, destacan los nuevos misiles aire-aire de ultra largo alcance, como el PL-17, con un alcance estimado de más de 300 kilómetros, además de bombas guiadas por precisión y misiles de crucero lanzados desde el aire.

Pero insistimos: el J-36 no debe entenderse como un caza convencional. Su papel está diseñado para ser el centro de gravedad de un ecosistema aéreo mucho más amplio, que incluiría enjambres de drones, algunos quizás del tamaño de pequeños cazas tripulados, integrados y controlados en tiempo real desde esta plataforma.

Y aquí es donde empiezan a surgir las teorías sobre su enigmático tercer motor.
Tres versiones. Tres formas de intentar entender el propósito de esa decisión poco ortodoxa.

Versión 1: el motor adicional es necesario para mover al gigante.
Con un peso estimado cercano a 60 toneladas, el J-36 requeriría un empuje considerable solo para maniobrar como lo haría un Su-35, uno de los cazas más ágiles de gran tamaño. Pero incluso así, la física es inflexible: la maniobrabilidad del J-36 es, como mínimo, cuestionable. Su tamaño, su masa y su configuración aerodinámica no apuntan a una plataforma diseñada para el combate cercano. Velocidad y alcance, tal vez. ¿Agilidad? Difícil.

Versión 2: el tercer motor es una fuente de energía, no de velocidad.
Más allá de la propulsión, este motor adicional podría estar diseñado para alimentar sistemas de alta demanda energética: radares de largo alcance, sensores múltiples, enlaces de datos de gran ancho de banda, sistemas de guerra electrónica, e incluso armas de energía dirigida como láseres o microondas, necesarias para defensa activa o control de drones en enjambre.

Esta hipótesis tiene lógica. El avión se convierte así en una plataforma de comando, un servidor aéreo en red con capacidades ofensivas y defensivas que trascienden el combate tradicional. Pero incluso esta versión tiene puntos débiles: la complejidad, la fiabilidad, el mantenimiento en combate… todo eso se multiplica con un motor adicional.

Y luego está la versión 3. La más atrevida. La más difícil de comprobar, pero imposible de descartar del todo: el tercer motor no es lo que parece.

Tal vez no sea un motor en el sentido clásico. Tal vez sea una cubierta para otro sistema, un contenedor modular, una bahía adicional camuflada, un emisor de energía, o incluso una plataforma de lanzamiento para drones miniaturizados o sistemas hipersónicos. En un avión diseñado para engañar radares y desinformar al enemigo, nada puede descartarse por completo.

Porque si algo queda claro con el J-36, es que no se trata simplemente de un caza más. Es una declaración estratégica envuelta en incógnitas técnicas. Un enigma de tres motores, dos alas y una función que, quizás, aún no entendemos del todo.



Y es en este punto donde todos se acomodan en sus asientos, tal vez con palomitas en mano, y la película realmente comienza. Porque sí: el tercer motor es un motor… pero no en el sentido tradicional. O al menos, no con la función que todos estamos esperando. Lo que estamos viendo hoy, esa estructura con tres salidas y líneas futuristas, podría no ser más que una ilusión funcional.

Vale la pena recordar que lo que se ha mostrado hasta ahora no es el modelo final. Es un prototipo, un banco de pruebas, un laboratorio volador. Una plataforma pensada para ensayar ideas, validar sistemas, jugar con límites. Lo que salga al otro lado del túnel de desarrollo podría parecerse… o podría ser algo radicalmente distinto.

Y luego está ese detalle que ha empezado a circular en algunos medios especializados: una tercera toma de aire supersónica, ubicada en la parte superior del fuselaje. Un elemento que no encaja del todo con la lógica de un diseño convencional, y que abre nuevas preguntas sobre lo que realmente alimenta ese supuesto tercer motor.

¿Qué es, entonces?
¿Una fuente de energía secundaria?
¿Una entrada para un sistema oculto de propulsión o refrigeración?
¿O simplemente un señuelo, una pieza colocada adrede para confundir a los observadores y analistas occidentales?

Nada puede descartarse. Porque si hay algo que China ha demostrado con el J-36, es que no está jugando bajo las reglas conocidas. Está diseñando algo más. Tal vez una nave polivalente. Tal vez una plataforma modular con funciones intercambiables. Tal vez un caza que no quiere parecerse a ningún caza.

Y ese supuesto tercer motor puede ser la clave o la cortina de humo.
Pero lo más intrigante es esto: el misterio, por ahora, parece completamente intencional.



Le planteé esta hipótesis a un veterano de VASO —un hombre con más de 32 años de experiencia en construcción aeronáutica— y su respuesta fue inmediata: “Es una idea más que interesante.” Según él, lo primero que llama la atención en el diseño del J-36 es el enorme espacio interno disponible. Los chinos, al parecer, tomaron la decisión desde el principio: construir una aeronave con volumen sobrado. Pero lo curioso no es eso. Lo curioso es cómo eligieron usarlo.

En teoría, si se tratara simplemente de alimentar un tercer motor convencional, habría sido mucho más sencillo rediseñar las dos tomas de aire principales, recalcular sus secciones transversales y desviar parte del flujo hacia el tercer motor. Fácil de calcular. Más simple de construir. Menos complicado en el taller.

Pero no. Los ingenieros chinos decidieron hacerlo a su manera. Y ahí es donde aparece la posibilidad más audaz de todas: ¿y si ese tercer motor no es un turborreactor, sino un motor cohete de propulsante líquido?

Parece ciencia ficción, pero no lo es.

El clásico par oxígeno-queroseno ha sido utilizado durante décadas en cohetes como la Soyuz-2 o el Falcon 9. Es un sistema probado, eficiente y relativamente seguro. El oxígeno líquido, aunque frío y volátil, es mucho menos peligroso que oxidantes como el flúor o el amilo. Además, este tipo de motor ofrece un impulso específico altísimo, del orden de los 3.500 m/s, algo que ningún turborreactor podría soñar alcanzar.

Claro que hay obstáculos. Para encender un motor cohete de estas características, se necesita un sistema de ignición externo que sincronice perfectamente el suministro de oxígeno y queroseno a la cámara de combustión. En los cohetes espaciales, se usan arrancadores eléctricos o químicos desechables. Pero en aviación, ya se está empezando a trabajar con encendidos por plasma, sistemas más complejos pero reutilizables, capaces de funcionar a cualquier altitud.

Y aquí entra en juego esa extraña toma de aire superior que tanto ha dado que hablar. Si no está diseñada para alimentar un turborreactor, podría servir como sistema auxiliar para iniciar la ignición del motor cohete, o incluso como parte del sistema de enfriamiento y ventilación interna para el almacenamiento de oxígeno líquido.

Las grandes dimensiones del J-36 no solo lo hacen ideal para transportar más combustible o armamento: también permiten instalar tanques criogénicos de oxígeno líquido dentro del fuselaje, sin comprometer el centro de gravedad ni la distribución estructural. Y como en los motores cohete el oxígeno se bombea hacia la cámara de combustión, no se necesitan tanques de presión excesiva ni paredes ultra reforzadas.

¿El resultado? Un avión con dos motores turborreactores y uno cohete. Una bestia híbrida capaz de funcionar como una aeronave convencional… hasta que necesite un impulso brutal en altitud, velocidad o energía, y entonces active su carta oculta.

Es una idea radical. Pero el J-36, desde el principio, no ha seguido ninguna regla convencional.
Y si la especulación acierta, podríamos estar ante el primer caza-cohete táctico del siglo XXI.




Cualquier persona normal se preguntaría: ¿para qué necesita una cabra un acordeón si ya está alegre? Y para alegrarla aún más.


Los propios desarrolladores chinos no han sido tímidos al describir el J-36: lo han presentado como un prototipo capaz de atravesar cualquier defensa y golpear donde más duele. Una afirmación audaz. Pero que, inevitablemente, lleva a una pregunta fundamental:
¿Cómo se atraviesa una defensa aérea moderna?

La respuesta, en realidad, no ofrece muchas opciones. Y cada una de ellas tiene sus propios límites —teóricos, prácticos o simplemente físicos.

La primera posibilidad es la más popular en la doctrina moderna: la invisibilidad ante el radar. El santo grial de la guerra aérea del siglo XXI. Utilizando diseño furtivo, materiales absorbentes, formas anguladas. El problema es que, con cada año que pasa, la eficacia de esta teoría es más discutida. Porque, a fin de cuentas, la baja observabilidad no significa invisibilidad, y lo que antes era tecnología de vanguardia, hoy empieza a enfrentarse a radares de banda múltiple, algoritmos adaptativos y sensores pasivos. ¿Funciona? A veces. ¿Garantiza atravesar "cualquier defensa"? Muy dudoso.

La segunda opción es más atrevida y, en ciertos contextos, muy efectiva: volar por debajo del radar. Literalmente. Rozando el terreno, aprovechando pliegues del paisaje y obstáculos naturales para esconderse del haz del radar. Lo vemos hoy en Ucrania, con drones y misiles de crucero deslizándose entre colinas y bosques. Pero esto, llevado a un avión del tamaño y peso del J-36 —un ala de 15 toneladas danzando a 50 metros sobre el suelo— es otra historia.
Aquí la física se impone: la inercia, el volumen, el margen de error. Tarde o temprano, un giro mal calculado termina en impacto. Y un sistema tan complejo no puede arriesgarse a un simple bache en el terreno.

Entonces queda una tercera opción. La menos explorada. La más radical:
no esquivar la defensa aérea, sino sobrevolarla completamente.
Romper el tablero y jugar desde otro plano.

Estamos hablando de operar a altitudes estratosféricas, 50, 60 kilómetros, quizás más. Por encima de todos los “paraguas” conocidos de defensa aérea. Y aquí, los números hablan por sí solos.

Tomemos el S-400 ruso, uno de los sistemas de defensa más avanzados del planeta. Su misil más potente, el 40N6E, tiene un techo de interceptación de 30 kilómetros.
El sistema Patriot estadounidense, tan temido como extendido, no supera los 20 kilómetros.
Y aunque Estados Unidos dispone de sistemas navales como el Standard Missile, incluso su versión avanzada, el SM-6, se queda en 33 km de altitud máxima.

Solo una excepción sobresale en este mapa de cifras: el SM-3, un interceptor diseñado no para el combate aéreo convencional, sino para interceptar misiles balísticos en la estratósfera. Un misil cinético, más cercano a un proyectil espacial que a una defensa aérea tradicional.

¿Y si el J-36, con su motor adicional y diseño masivo, no está pensado para evadir… sino para volar más alto que nadie?

Una plataforma que se eleva por encima del alcance de los radares, de los misiles, del ruido del combate.
Un atacante desde las alturas, descendiendo como un cometa en el momento preciso.
Un avión que, literalmente, vuela por fuera de las reglas.



En resumen, estamos hablando de un misil capaz de volar a altísimas altitudes y velocidades extremas. El SM-3, misil interceptor de tres etapas, puede alcanzar hasta 250 km de altitud y guía su trayectoria mediante un buscador infrarrojo, lo que lo convierte en una plataforma de intercepción extremadamente sofisticada. Pero también tiene sus límites.

Porque el SM-3 fue diseñado con una misión muy concreta: destruir objetos que no maniobran, como la ojiva de un misil balístico o incluso un satélite en órbita baja. Objetivos que siguen una trayectoria perfectamente predecible. Y aquí está el problema: nadie sabe cómo respondería este misil frente a un objetivo que maniobra activamente. Las pruebas necesarias para comprobarlo simplemente no se han realizado.

Además, Estados Unidos no tiene muchos misiles de este tipo. Son caros —muy caros—: cada unidad cuesta entre 18 y 24 millones de dólares, según su variante. Y por eso se emplean con cuenta gotas, solo en escenarios de máxima prioridad estratégica.

Así que si el escenario es un avión que opera a 50 o 60 kilómetros de altitud, justo donde la atmósfera aún permite cierto uso aerodinámico, pero muy por encima del alcance de casi todas las defensas, las posibilidades de interceptarlo son mínimas. Si además lleva un motor cohete, y no depende de oxígeno ambiental, puede alcanzar esa altitud con relativa facilidad.

Y no hablamos de un ataque a territorio continental. Porque China no necesita ni pretende atacar el territorio estadounidense. Lo que le preocupa está más cerca.
Hablamos del Océano Pacífico. De Taiwán. Y de los grupos de ataque de portaaviones (AUG) estadounidenses que se aproximan para defenderlo.

Ahí es donde este tipo de aeronave —una plataforma estratosférica armada, rápida y precisa— entra en juego.

Porque lanzar un misil balístico contra un AUG es una solución limitada. Sí, su ojiva es veloz, difícil de interceptar, pero poco precisa. Por diseño, su guiado final es tosco, y cualquier corrección de trayectoria es difícil debido a la alta velocidad de descenso y la resistencia atmosférica. La física pone sus reglas, y la precisión (CEP) se resiente seriamente.

En cambio, un avión de gran altitud puede detectar, rastrear y elegir su objetivo en tiempo real. Puede lanzar bombas guiadas o cohetes desde 50 km de altitud, sin entrar jamás en el alcance efectivo de los sistemas de defensa aérea de los buques.

Pensemos en eso: una bomba guiada, con bajo perfil radar, lanzada desde el borde de la estratósfera. Su caída sería limpia, rápida, difícil de interceptar, con un perfil térmico reducido. No es un proyectil que desciende como un meteorito desde el espacio, sino algo más controlado, más inteligente. Y si hablamos de municiones pequeñas y sigilosas, el radar del AUG tendrá problemas para verlas llegar… y más aún para detenerlas.

¿Imposible? Tal vez no tanto.
Basta recordar al mayor Bernhard Jope, que el 9 de septiembre de 1943, a bordo de un bombardero alemán, lanzó dos bombas guiadas Fritz X sobre el acorazado Roma de la marina italiana. Dos impactos. Un buque insignia hundido. Una lección temprana de lo que puede hacer un ataque guiado, preciso y desde arriba.

Hoy, casi un siglo después, la historia podría repetirse. Solo que esta vez, a 50 kilómetros de altitud, y con una tecnología que ni siquiera soñaban en 1943.

Un avión cohete estratosférico, armado con bombas guiadas o cohetes precisos, no es ciencia ficción. Es una respuesta táctica elegante y brutal para un problema real: cómo romper un grupo de combate naval sin entrar en su alcance.
Y si el J-36 apunta en esa dirección, no es solo un caza más.
Es un cambio de paradigma.




Dos bombas con un peso de 1.570 kg enviaron al fondo el nuevo acorazado con un desplazamiento de 46 toneladas.


No es difícil predecir lo que dos bombas de este tipo harán a un barco moderno, que prácticamente no tiene blindaje en comparación con los barcos de la Segunda Guerra Mundial.


Un avión cohete como el J-36 tiene una ventaja que cambia las reglas del juego: es reutilizable.
A diferencia de un misil balístico o de crucero, que es por definición un sistema de un solo uso —un billete de ida sin retorno—, un avión puede adaptarse. Puede cambiar de objetivo sobre la marcha, puede retirarse si la situación cambia, puede esperar el momento adecuado para atacar. Y si es pilotado —ya sea por un humano o por una IA autónoma avanzada—, tomará decisiones mucho más complejas que las de cualquier computadora a bordo de un proyectil.

Un misil, por su parte, solo tiene una opción: ser disparado y seguir su trayectoria. Sin corrección. Sin repliegue. Sin margen de maniobra táctica. Solo avanzar… o autodestruirse.

Y cuando hablamos de costos, el panorama es revelador.
Un misil balístico Bulava cuesta alrededor de 10 millones de dólares.
Un Iskander, unos 3 millones.
Incluso un misil de crucero Kalibr ronda el medio millón.
En cambio, una bomba guiada por láser o por satélite, lanzada desde gran altura y con precisión quirúrgica, cuesta una fracción de eso. Y en condiciones ideales, puede ser igual o más efectiva, sobre todo cuando el blanco es móvil y las circunstancias cambian en segundos.

Pero eso no es todo. Las bodegas del J-36 podrían no estar llenas de bombas o misiles. Podrían estar cargadas de drones asesinos. Vehículos autónomos de ataque, lanzables desde la estratósfera, capaces de dispersarse en formación, saturar sensores enemigos, confundir defensas y golpear desde múltiples ángulos. Y si hay un país con los medios para hacerlo, es China. El desarrollo de drones en enjambre, algoritmos de control distribuido y miniaturización armada está muy avanzado en sus laboratorios.

¿Controversial? Tal vez.
¿Audaz? Sin duda.
Pero todo concepto revolucionario comienza con una idea que desafía lo conocido.

El J-36 no es todavía una realidad consolidada. Es un prototipo, una visión, una pieza de ingeniería especulativa que apunta hacia lo que China imagina como el avión de ataque del futuro. Y como dice el proverbio chino:
“El viaje de mil millas comienza con el primer paso.”
Este podría ser ese paso.

La teoría puede parecer atrevida, pero no por eso carece de fundamento.
Y como ocurre siempre con los nuevos desarrollos militares chinos de alto perfil, las imágenes y los vídeos aumentarán. Veremos al J-36 rodar, despegar, maniobrar, tal vez entrenar. Poco a poco, el rompecabezas irá tomando forma, y con él, las respuestas a muchas de las preguntas que hoy solo podemos plantear.

Pero una cosa ya es clara:
China no está imitando el pasado. Está diseñando su propia versión del futuro.


lunes, 9 de junio de 2025

Ucrania: F-16 o SAM derriba un Su-35


Un misil tierra-aire ucraniano acaba de derribar uno de los mejores cazas Su-35 de Rusia.

Fue la octava pérdida de un Su-35 en la guerra.
David Axe y Defensa Aviación

Este sábado a las 10:10 horas CET, la Fuerza Aérea Ucraniana comunicó lo siguiente: "Esta mañana, 7 de junio de 2025, tras una exitosa operación de la Fuerza Aérea en dirección a Kursk, ¡un caza ruso Su-35 fue derribado!". Ayer, a las 10:55 horas CET, la Fuerza Aérea Ucraniana publicaba este vídeo del avión derribado, insertando en él capturas de fuentes rusas confirmando el derribo del avión, un Sukhoi Su-35S, y que su único tripulante había logrado eyectarse:



Otras fuentes dicen que un misil tierra-aire de la fuerza aérea ucraniana derribó un Sukhoi Su-35 de la fuerza aérea rusa sobre el óblast de Kursk, en el oeste de Rusia, el sábado. El Su-35 bimotor es el mejor caza ruso, y su uso está extendido.

Los informes iniciales de que un Lockheed Martin F-16 ucraniano derribó el Su-35 eran aparentemente falsos. "Según información actualizada, el caza Su-35 que despegó de la base aérea de Borisoglebsk fue derribado por un sistema de misiles tierra-aire", corrigió el análisis de AviVector.

Air Power señaló ayer que diversos informes sugieren que el Su-35 habría sido derribado por un F-16AM ucraniano con un misil aire-aire de medio alcance AIM-120 AMRAAM: "De confirmarse, marcaría el primer derribo aire-aire de un Viper ucraniano. Más importante aún, significaría que el Flanker ruso de primera línea fue derribado por un F-16AM exneerlandés, una variante que muchos consideraban obsoleta".

Habría sido la primera muerte confirmada por la flota ucraniana de F-16, que crece lentamente, exeuropeos. Y dadas las circunstancias, la muerte de un F-16 es cada vez más probable.

Las aproximadamente dos docenas de aviones supersónicos monoplaza F-16AM/BM de Ucrania (de los 85 que un consorcio belga-danés-holandés-noruego prometió al país) están ocupados sobre Kursk y la vecina provincia ucraniana de Sumy, mientras sus pilotos intentan detener una ofensiva rusa que amenaza a la ciudad de Sumy y a sus 250.000 habitantes.


jueves, 17 de abril de 2025

Producción y desarrollo de misiles en Gran Bretaña

Desarrollo y producción de misiles antiaéreos en Gran Bretaña

Weapons and Warfare




Misil Bloodhound

La industria de armas guiadas del Reino Unido tuvo sus orígenes en una serie de experimentos tempranos realizados durante la Segunda Guerra Mundial por varios establecimientos. El progreso en este trabajo fue ayudado por un acuerdo sobre la transferencia de datos clasificados de diseño de armas estadounidenses que fue el resultado de la Misión Tizard, que visitó Washington en 1940.

El primer requisito formal del personal para armas guiadas emitido por el Establecimiento de Señales del Almirantazgo a fines de 1943 proponía un misil tierra-aire (SAM) que sería guiado por un haz de radar. El Comité de Proyectiles Antiaéreos Guiados, un comité interservicios, se formó en marzo de 1944 para controlar y dirigir la investigación de proyectiles antiaéreos. Los requisitos operativos del Comando Antiaéreo del ejército (posteriormente transferido a la RAF) y el Almirantazgo eran lo suficientemente compatibles como para ser investigados conjuntamente, y el trabajo preliminar finalmente dio lugar a los sistemas de misiles Sea Slug, Bloodhound y Thunderbird. Hacia el final de las hostilidades, Estados Unidos revisó el Acuerdo Tizard y se redujo el flujo de nueva información científica, lo que tuvo un grave efecto en el progreso del desarrollo de armas guiadas por los británicos.


Misil Sea Slug


Misil Thunderbird


Al final de la Segunda Guerra Mundial, la economía británica estaba al borde del colapso y la terminación repentina del programa de Préstamo y Arriendo obligó a una reevaluación inmediata de un gasto sustancial en defensa. Los jefes de Estado Mayor asumieron que no habría guerra durante los siguientes diez años. Sin embargo, se iniciaron varios proyectos de investigación de armas guiadas. En vista de la amenaza percibida de las armas atómicas y la comprensión de que el país densamente poblado podría no ser capaz de sobrevivir a un conflicto nuclear, se dio prioridad al Comando de Cazas y a la defensa antiaérea. En 1948, el Ministerio de Suministros decidió reducir la investigación sobre misiles de largo alcance para concentrarse en el programa de misiles defensivos.

En enero de 1950, la transferencia de tecnología de armas guiadas entre Estados Unidos y el Reino Unido se formalizó mediante el Acuerdo Burns-Templer, que preveía el intercambio pleno y franco de información militar y tecnología de armas guiadas. El primer lote de información sobre nuevos proyectos de armas estadounidenses llegó durante la segunda mitad de 1950, y se evaluaron armas como los misiles Terrier II, Hawk y Sparrow para determinar si podían incluirse en el programa de armas guiadas del Reino Unido.

El estallido de la Guerra de Corea en junio de 1950 fue una sorpresa desagradable para los planificadores estratégicos. Se inició un programa drástico de rearme y el presupuesto de defensa se duplicó aproximadamente, con la ayuda de Estados Unidos. Aunque se trató de una precaución prudente a la luz de los acontecimientos internacionales, ejerció una presión sobre la economía que tendría consecuencias desafortunadas antes de que terminara la década.

En 1955, Sir Anthony Eden inició una amplia revisión de la estrategia de defensa para reducir el gasto en defensa. Duncan Sandys continuó la revisión hasta 1957, cuando se publicó un famoso libro blanco sobre defensa. En él se hacía gran hincapié en la disuasión nuclear, inicialmente lanzada por los bombarderos V y más tarde por el misil Blue Streak disparado desde silos subterráneos. Las bases de los bombarderos V debían estar protegidas inicialmente por defensas de cazas y más tarde únicamente por un sistema de misiles tierra-aire. Esta doctrina quedó desacreditada en pocos años, cuando quedó claro que Gran Bretaña no podía permitirse pagar la investigación y la tecnología necesarias para que la disuasión fuera lo suficientemente segura frente a los ataques.

A finales de los años 50, los proyectos que se habían iniciado en los años 40 comenzaron a entrar en servicio. El Fairey Fireflash fue la primera arma guiada aire-aire que desplegó la RAF, aunque a una escala muy limitada en agosto de 1957. El Fireflash era un radar que se desplazaba por el haz y tenía una capacidad limitada contra los bombarderos con motor de pistón.


AAM Fairey Fireflash

El primer misil guiado completamente operativo que se desplegó fue el Bristol Bloodhound SAM en 1958. Utilizaba un sistema de guiado por radar Doppler semiactivo y se desplegaba normalmente con cuatro lanzadores móviles controlados por un radar de iluminación de objetivos. Un Bloodhound Mk.II mejorado entró en servicio en 1964. El Thunderbird SAM debutó con el ejército británico en 1960 y tenía un rendimiento similar al Bloodhound.

El primer misil aire-aire efectivo fue el de Havilland Firestreak. Era un arma de aspecto trasero desplegada por la Royal Navy y la RAF en agosto de 1958. El Red Top posterior se basaba en el Firestreak Mk. IV. Era más rápido, tenía un mayor alcance y era capaz de dirigirse en todos los aspectos contra objetivos supersónicos. Entró en servicio en 1964.


AAM de Havilland Firestreak


El Armstrong-Whitworth Sea Slug era un SAM naval. Su guía era por haz de radar y tenía propulsores de combustible sólido acoplados y un sustentador de combustible sólido. Después de un prolongado período de desarrollo, entró en servicio en 1962 a bordo de destructores de la clase County.

El misil nuclear Avro Blue Steel entró en servicio en diciembre de 1962 y fue transportado por los bombarderos Vulcan y Victor V. Fue diseñado para lanzar una ojiva nuclear a un objetivo a 100 millas del punto de lanzamiento utilizando guiado inercial.

El de Havilland Blue Streak estaba destinado a ser un misil balístico de alcance intermedio. Su desarrollo dependió en gran medida de la ayuda de Estados Unidos, ya que el diseño se basó en el Atlas. Tras una presión extrema del Tesoro, el programa Blue Streak se canceló en abril de 1960 en favor del misil estadounidense Skybolt (que posteriormente fue cancelado por el secretario de Defensa de Estados Unidos, Robert McNamara, en noviembre de 1962).

En 1977, concluyó un largo período de fusión industrial con la formación de British Aerospace (BAe), una gran entidad que incluía a todas las empresas aeroespaciales británicas restantes, excepto Short.

El misil BAe Skyflash fue el único misil aire-aire guiado por radar que entró en servicio con éxito en el siglo XX y fue una adaptación del Raytheon AIM-7E2 Sparrow con un nuevo buscador semiactivo monopulso. Entró en servicio en la RAF en 1980.

Muchos otros sistemas de misiles se desarrollaron y entraron en servicio entre finales de los años 1960 y 1980, incluyendo el SAM naval Sea Dart (1967), el SAM naval Sea Wolf (1979), el Rapier de defensa puntual con base en tierra (1970) y el antibuque Sea Skua (1982). Todas estas armas se utilizaron durante la Guerra de las Malvinas de 1982 con un éxito razonable.

En 1996, BAe Dynamics y Matra Defense unieron sus fuerzas para crear una nueva empresa de defensa. Matra BAe Dynamics tiene una amplia y muy competente cartera de productos y capacidad de investigación y a principios de siglo desarrolló el misil convencional de largo alcance Storm Shadow y el misil aire-aire Meteor, que supera el alcance visual, para la RAF.


jueves, 2 de enero de 2025

SAM: Sistemas de misiles antiaéreos británicos (1/2)

Sistemas de misiles antiaéreos británicos

Parte 1 || Parte 2
Revista Militar (original en ruso)




El trabajo en los primeros misiles antiaéreos británicos comenzó durante la Segunda Guerra Mundial. Como calcularon los economistas británicos, el costo de los proyectiles de artillería antiaéreos consumidos fue casi igual al costo de un bombardero caído. Al mismo tiempo, era muy tentador crear un interceptor piloto remoto de una sola vez que garantizara la destrucción del reconocimiento o bombardero a gran altitud enemigo.

El primer trabajo en esta dirección comenzó en 1943. El proyecto, llamado Braikemina (English Brakemine), preveía la creación del misil antiaéreo guiado más simple y económico.

Como sistema de propulsión, se utilizó un grupo de ocho motores de combustible sólido de misiles antiaéreos no guiados de 76 mm. Se suponía que el lanzamiento se realizaría desde la plataforma de los cañones antiaéreos de 94 mm. Misiles de guía transportados en el haz del radar. La altura estimada de la lesión debía alcanzar los 10.000 m.

A finales de 1944, comenzaron los lanzamientos de prueba, sin embargo, debido a numerosos fallos de funcionamiento, el trabajo de desarrollo de misiles se retrasó. Después de que terminó la guerra, debido a la pérdida de interés de los militares en este tema, se detuvieron los fondos para el trabajo.

En 1944, la compañía Fairey comenzó a trabajar en la creación de un misil antiaéreo de combustible sólido controlado por radio "Stud" (inglés Stooge - simulador). Como aceleradores de lanzamiento, se utilizaron varios motores de misiles antiaéreos de 76 mm. Cuatro motores de cohetes no guiados Swallow de 5 pulgadas sirvieron como motores de marcha.


SAM "Stud"

La financiación del trabajo fue realizada por el departamento naval, que necesitaba un medio eficaz para proteger a los buques de guerra de los ataques de los kamikazes japoneses.

En las pruebas que comenzaron en 1945, el cohete alcanzó una velocidad de 840 km / h. Se fabricaron y probaron 12 misiles. Sin embargo, en 1947, todo el trabajo sobre este tema se detuvo debido a una clara falta de perspectivas.

Sobre los misiles antiaéreos en el reino de la isla recordados después del advenimiento de las armas nucleares en la URSS. Los bombarderos soviéticos Tu-4 de largo alcance, que actúan desde aeródromos en la parte europea del país, podrían alcanzar cualquier objeto en el Reino Unido. Y aunque los aviones soviéticos tendrían que volar sobre el territorio de Europa occidental, saturados de defensa aérea estadounidense, sin embargo, tal escenario no podría ser completamente excluido.

A principios de los años 50, el gobierno británico asignó fondos significativos para modernizar los existentes y desarrollar nuevos sistemas de defensa aérea. De acuerdo con estos planes, se anunció una competencia para la creación de un sistema de defensa aérea de largo alcance que podría combatir a los prometedores bombarderos soviéticos.

A la competencia asistieron English Electric y Bristol. Los proyectos presentados por ambas empresas, en términos de sus características, fueron en gran medida similares. Como resultado, el liderazgo británico en caso de falla de una de las opciones decidió desarrollar ambas.

Los cohetes creados por English Electric - Thunderbird ("Petrel" en inglés) y Bristol - "Bloodhound" ("Hound" en inglés) fueron incluso muy similares en apariencia. Ambos misiles tenían un cuerpo cilíndrico estrecho con un radomo cónico y una unidad de cola desarrollada. Se instalaron cuatro propulsores sólidos de lanzamiento en las superficies laterales de los misiles. Para la orientación de misiles de ambos tipos, se suponía que debía usar el radar radar "Ferranti" tipo 83.

Inicialmente, se suponía que el lanzador de misiles Thunderbird usaría un motor de propulsión líquida de dos componentes. Sin embargo, los militares insistieron en usar un motor de combustible sólido. Esto retrasó un poco la adopción del complejo antiaéreo y limitó sus capacidades en el futuro.


SAM Thunderbird


Al mismo tiempo, los cohetes de combustible sólido eran mucho más simples, seguros y económicos de mantener. No requerían una infraestructura engorrosa para repostar, entregar y almacenar combustible líquido.

Las pruebas del cohete Thunderbird, que comenzó a mediados de los años 50, a diferencia de su competidor, el misil Bloodhound, se desarrollaron sin problemas. Como resultado, el Thunderbird estaba listo para ser adoptado mucho antes. En este sentido, las fuerzas terrestres decidieron abandonar el apoyo al proyecto de Bristol, y el futuro del misil antiaéreo Bloodhound estaba en duda. El sabueso fue salvado por la Royal Air Force. Los representantes de la Fuerza Aérea, a pesar de la falta de conocimiento y numerosos problemas técnicos, percibieron un gran potencial en un cohete con motores de propulsión líquida ramjet.

El Thunderbird entró en servicio en 1958, por delante del Bloodhound. Este complejo reemplazó los cañones antiaéreos de 94 mm en los regimientos de defensa antiaérea pesados ​​36 y 37 de las fuerzas terrestres. Cada regimiento tenía tres baterías antiaéreas del sistema de defensa aérea Thunderbird. La batería incluía: designación y orientación del objetivo del radar, puesto de control, generadores diesel y 4-8 lanzadores.

Para su época, el lanzador de misiles de combustible sólido Thunderbird tenía buenas características. Un misil con una longitud de 6350 mm y un diámetro de 527 mm en la variante Mk 1 tenía un alcance de puntería de 40 km y un alcance de 20 km. El primer sistema de misiles de defensa aérea S-75 de masa soviética tenía características similares de alcance y altitud, pero utilizaba un cohete cuyo motor principal funcionaba con combustible líquido y un oxidante.

A diferencia de los misiles antiaéreos soviéticos y estadounidenses de primera generación, que usaban un sistema de guía de comando por radio, los británicos desde el principio planearon un cabezal de referencia semi-activo para los sistemas de defensa aérea Thunderbird y Bloodhound. El radar de iluminación del objetivo se utilizó para capturar, rastrear y guiar misiles al objetivo, iluminó el objetivo para el GOS de un misil antiaéreo, que apuntaba a la señal reflejada desde el objetivo. Este método de guía tenía mayor precisión en comparación con el comando de radio y no dependía tanto de la habilidad del operador de guía. De hecho, para la derrota fue suficiente para mantener el rayo del radar en el blanco. En la URSS, los sistemas de defensa aérea con dicho sistema de guía S-200 y "Square" aparecieron solo en la segunda mitad de los años 60.

Las baterías antiaéreas formadas inicialmente sirvieron como guardia para importantes instalaciones industriales y militares en las Islas Británicas. Después de adaptarse a una condición de trabajo y adoptar el sistema de defensa aérea Bloodhound, que se encargó de defender el Reino Unido, todos los regimientos de misiles antiaéreos de las fuerzas terrestres con el sistema de defensa aérea Thunderbird fueron transferidos al Ejército del Rin en el FRG. 



En las décadas de 1950 y 1960, los aviones a reacción de combate se desarrollaron a un ritmo muy rápido. En este sentido, en 1965, el sistema de defensa aérea Thunderbird se modernizó para mejorar el rendimiento de combate. El radar de seguimiento y guía de pulso fue reemplazado por una estación más potente y resistente al ruido que opera en el modo de radiación continua. Debido al aumento en el nivel de la señal reflejada desde el objetivo, fue posible disparar a objetivos que vuelan a una altura de hasta 50 metros. El cohete en sí también fue mejorado. La introducción de un nuevo motor de marcha más potente y potenciadores de arranque en la variante Thunderbird Mk. II permitió aumentar el alcance de tiro hasta 60 km.

Pero las capacidades del complejo para combatir objetivos de maniobra activa eran limitadas, y representaba un peligro real solo para los bombarderos voluminosos de largo alcance. A pesar del uso de misiles propulsores sólidos altamente avanzados con buscador semiactivo como parte de este sistema de defensa aérea británico, no se usó ampliamente fuera del Reino Unido.


En 1967, Arabia Saudita compró varias modificaciones de Thunderbird Mk eliminadas del servicio en el Reino Unido. I. El interés en este complejo mostró Libia, Zambia y Finlandia. Los finlandeses fueron enviados a probar varios SAM con PU, pero más allá de esto, el asunto no avanzó.

En los años 70, el Thunderbird comenzó a eliminarse gradualmente a medida que llegaban nuevos sistemas de baja altitud. El comando del ejército llegó a la conclusión de que la principal amenaza para las unidades terrestres no eran los bombarderos pesados, sino helicópteros y aviones de ataque que este complejo bastante voluminoso y de baja movilidad no podía combatir de manera efectiva. Los últimos sistemas de defensa aérea Thunderbird fueron retirados del servicio en las unidades de defensa aérea del ejército británico en 1977.

El destino del competidor, el sistema de defensa aérea Bloodhound de Bristol, a pesar de las dificultades iniciales con el desarrollo del complejo, fue más exitoso.

En comparación con el Thunderbird, el misil Bloodhound era más grande. Su longitud era 7700 mm y un diámetro de 546 mm, el peso del cohete superó los 2050 kg. El alcance de lanzamiento de la primera opción fue un poco más de 35 km, que es comparable al alcance de tiro del sistema de defensa de combustible sólido estadounidense MIM-23B HAWK, mucho más compacto y de baja altitud.


SAM "Bloodhound"


El SAM "Bloodhound" tenía un diseño muy inusual, ya que un sistema de propulsión marchaba utilizaba dos motores Ramjet "Tor", que funcionaban con combustible líquido. Se montaron motores en marcha en paralelo en las partes superior e inferior del casco. Para acelerar el cohete a la velocidad a la que podían operar los ramjets, se utilizaron cuatro propulsores de combustible sólido. Los aceleradores y parte del plumaje se reiniciaron después de que el cohete se aceleró y los motores de marcha comenzaron a funcionar. Los motores de marcha de flujo directo dispersaron el cohete en la sección activa a una velocidad de 2.2 M.

Aunque el mismo método y radar de iluminación que el utilizado en el sistema de defensa aérea Thunderbird se utilizó para apuntar a los misiles Bloodhound, el equipo terrestre del Hound era mucho más complicado que el equipo terrestre del Burevestnik.

Para determinar la trayectoria óptima y el momento del lanzamiento del misil antiaéreo como parte del complejo Bloodhound, se utilizó una de las primeras computadoras de producción británicas, Ferranti Argus. Diferencia con el sistema de defensa aérea Thunderbird: en la batería antiaérea Bloodhound, se proporcionaron dos radares de objetivos, que permitieron lanzar todos los misiles en una posición de disparo a dos objetivos aéreos enemigos con un intervalo corto.

Como ya se mencionó, el desarrollo de los misiles Bloodhound fue muy difícil. Esto se debió principalmente al funcionamiento inestable y poco confiable de los motores ramjet. Los resultados satisfactorios de la operación de los motores de marcha se lograron solo después de aproximadamente 500 pruebas de fuego de los motores Thor y lanzamientos de pruebas de misiles, que se llevaron a cabo en el sitio de prueba australiano de Woomera.



A pesar de algunas deficiencias, los representantes de la Fuerza Aérea acogieron favorablemente el complejo. Desde 1959, el sistema de misiles de defensa aérea Bloodhound ha estado en servicio de combate, cubriendo bases aéreas en las que se desplegaron bombarderos Vulcan de largo alcance británicos.

A pesar del mayor costo y complejidad, las ventajas del Bloodhound fueron un excelente rendimiento de fuego. Lo que se logró por la presencia en la batería de fuego de dos guías de radar y una gran cantidad de misiles antiaéreos listos para el combate en posición. Alrededor de cada radar de iluminación había ocho lanzadores con misiles, mientras que los misiles se controlaban y guiaban desde un solo puesto centralizado.

Otra ventaja significativa de los misiles Bloodhound en comparación con el Thunderbird fue su mejor maniobrabilidad. Esto se logró debido a la ubicación de las superficies de control cerca del centro de gravedad. El aumento en la velocidad de giro del cohete en el plano vertical también se obtuvo cambiando la cantidad de combustible suministrado a uno de los motores.

Casi simultáneamente con el SAM Thunderbird Mk. II, la Fuerza Aérea de la Real Fuerza Aérea entró en el Bloodhound Mk. II Este sistema de defensa aérea superó en muchos aspectos a su rival originalmente más exitoso.



El misil antiaéreo del Bloodhound modernizado se hizo 760 mm más largo, su peso aumentó en 250 kg. Debido al aumento en la cantidad de queroseno a bordo y al uso de motores más potentes, la velocidad aumentó a 2.7M y el rango de vuelo hasta 85 km, es decir, casi 2.5 veces. El complejo recibió una nueva y potente guía de radar antiinterferencias del Ferranti Type 86 "Firelight". Existía la posibilidad de rastrear y disparar objetivos a baja altitud.


Radar Ferranti Tipo 86 "Firelight"

En este radar había un canal de comunicación separado con el misil, a través del cual la señal recibida por el jefe de referencia del misil antiaéreo se transmitía al puesto de control. Esto permitió la selección efectiva de objetivos falsos y la supresión de interferencias.

Gracias a la modernización cardinal de los misiles complejos y antiaéreos, no solo aumentó la velocidad de los misiles y el alcance de la destrucción, sino que también aumentó significativamente la precisión y la probabilidad de alcanzar el objetivo.

Al igual que los sistemas de defensa aérea Thunderbird, las baterías Bloodhound sirvieron en Alemania Occidental, pero después de 1975 todos regresaron a su tierra natal, ya que el liderazgo británico decidió una vez más fortalecer la defensa aérea de las islas.

En ese momento, en la URSS, los bombarderos Su-24 comenzaron a ingresar al armamento de los regimientos de bombardeo de primera línea. Según el comando británico, habiendo penetrado a baja altitud, podrían lanzar ataques de bombardeo repentinos sobre objetivos estratégicamente importantes.

Las posiciones fortificadas se equiparon para los sistemas de misiles de defensa aérea Bloodhound en el Reino Unido, mientras que la guía de radar se montó en torres especiales de 15 metros, lo que aumentó la capacidad de disparar a objetivos de baja altitud.

Bloodhound disfrutó de cierto éxito en el mercado extranjero. Los australianos fueron los primeros en recibirlos en 1961, era una variante del Bloodhound Mk I, que sirvió en el Continente Verde hasta 1969. Los siguientes fueron los suecos, que compraron nueve baterías en 1965. Después de que Singapur obtuvo su independencia, los complejos del 65 ° escuadrón de la Royal Air Force permanecieron en este país.




SAM Bloodhound Mk.II en el Museo de la Fuerza Aérea de Singapur

En el Reino Unido, los últimos sistemas de defensa aérea Bloodhound fueron retirados del servicio de combate en 1991. En Singapur, estuvieron en servicio hasta 1990. Los Bloodhounds duraron más tiempo en Suecia, habiendo servido durante más de 40 años, hasta 1999.

Poco después de la adopción de los sistemas de defensa aérea de la Marina Real de Gran Bretaña del sistema de defensa aérea de corto alcance Sea Kat, el comando de las fuerzas terrestres se interesó en este complejo.

Según el principio de funcionamiento y diseño de las partes principales, la variante de tierra, llamada Tigercat (Tigercat inglés - marsupial marten o tigre gato), no difería del sistema de defensa aérea Sea Kat. El desarrollador y fabricante de las versiones terrestres y marítimas del sistema de defensa aérea fue la compañía británica Shorts Brothers. Para adaptar el complejo de acuerdo con los requisitos de las unidades de tierra, Harland participó.

El sistemas de defensa aérea Tigercat: un lanzador con misiles antiaéreos y sistemas de guía se ubicaron en dos remolques que remolcaban vehículos de campo a través de Land Rover. Un lanzador móvil con tres misiles y un puesto de guía de misiles podría viajar en carreteras pavimentadas a velocidades de hasta 40 km / h.


PU SAM Tigercat

En la posición de disparo, el poste de guía y los lanzadores se colgaron de los Tigercats sin separación de la transmisión de la rueda y se conectaron entre sí mediante líneas de cable. La transición de viajar al combate tomó 15 minutos. Al igual que en el sistema de defensa aérea de la nave, se cargaron 68 kg de misiles en los lanzadores manualmente.

En la estación de orientación con el lugar de trabajo del operador, equipado con equipos de comunicación y vigilancia, había un conjunto de equipos informáticos analógicos para generar comandos de guía y una estación para transmitir comandos de radio al cohete.

Al igual que en el complejo marino Sea Cat, el operador de guía, después de la detección visual del objetivo, "capturaba" y guiaba el misil antiaéreo, luego de lanzarlo a través de un dispositivo óptico binocular, controlando su vuelo con la ayuda de un joystick.

Operador de orientación SAM "Tigercat"

Idealmente, la designación del objetivo se llevó a cabo desde el radar de la encuesta de situación en el aire a través del canal de radio VHF o por equipos de observadores ubicados a cierta distancia de la posición SAM. Esto hizo posible que el operador de orientación se preparara para el lanzamiento por adelantado y desplegara el lanzador de misiles en la dirección deseada.

Sin embargo, incluso durante los ejercicios, esto no siempre funcionó, y el operador tuvo que buscar e identificar el objetivo de forma independiente, lo que provocó un retraso en la apertura del fuego. Dado el hecho de que el lanzador de misiles Tigercat voló a una velocidad subsónica, y a menudo se persiguió el disparo, la efectividad del complejo en aviones de combate a reacción no era alta cuando se puso en servicio en la segunda mitad de los años 60.

Después de pruebas bastante largas, a pesar de las deficiencias identificadas, el sistema de misiles de defensa aérea Tigercat fue adoptado oficialmente por el Reino Unido a fines de 1967, lo que causó una gran emoción en los medios británicos, impulsado por el fabricante para pedidos de exportación.


Página en una revista británica con una descripción del sistema de defensa aérea Tigercat


En las Fuerzas Armadas británicas, los sistemas Tigercat se suministraron principalmente a unidades antiaéreas, que anteriormente tenían cañones antiaéreos Bofors de 40 mm en servicio.

Después de una serie de campos de tiro en aviones de destino controlados por radio, el comando de la Fuerza Aérea era bastante escéptico sobre las capacidades de este sistema de defensa aérea. La derrota de los objetivos de alta velocidad y maniobras intensivas era imposible. A diferencia de los cañones antiaéreos, no se podía usar de noche y en condiciones de poca visibilidad.

Por lo tanto, la edad del sistema de defensa aérea Tigercat en las fuerzas armadas británicas, a diferencia de su contraparte naval, fue de corta duración. A mediados de los años 70, todos los sistemas de defensa aérea de este tipo fueron reemplazados por sistemas más avanzados. Incluso el conservadurismo británico, la alta movilidad, el transporte aéreo y el costo relativamente bajo de equipos y misiles antiaéreos no ayudaron.


A pesar de que el complejo estaba desactualizado a principios de los años 70 y no correspondía a las realidades modernas, esto no impidió que vendiera los sistemas de defensa aérea Tigercat retirados del servicio en el Reino Unido a otros países. El primer pedido de exportación vino de Irán en 1966, incluso antes de que el complejo fuera adoptado formalmente en Inglaterra. Además de Irán, los Tigercat fueron adquiridos por Argentina, Qatar, India, Zambia y Sudáfrica.

El uso de combate de este sistema de defensa aérea era limitado. En 1982, los argentinos los desplegaron en las Malvinas. Se cree que lograron dañar a un Sea Harrier británico. Lo cómico de la situación es que los complejos utilizados por los argentinos antes que estaban en servicio en el Reino Unido y después de la venta se usaron contra los antiguos propietarios. Sin embargo, los marines británicos nuevamente los regresaron a su patria histórica, capturando varios sistemas de defensa aérea intactos.

Además de Argentina, el Tigercat fue utilizado en combate en Irán durante la guerra Irán-Iraq. Pero no hay datos confiables sobre los éxitos militares de los cálculos antiaéreos iraníes. En Sudáfrica, que está llevando a cabo hostilidades en Namibia y el sur de Angola, el sistema de defensa aérea Tigercat, que recibió la designación local Hilda, sirvió para proporcionar defensa aérea para bases aéreas y nunca se lanzó para objetivos aéreos reales. La mayoría de los sistemas de defensa aérea de Tigercat fueron retirados del servicio a principios de la década de 1990, pero en Irán continuaron formalmente en servicio al menos hasta 2005.