Según informes, la base aérea de Belbek fue atacada nuevamente esta tarde, lo que provocó incendios. Todavía faltan imágenes satelitales claras que demuestren el nuevo ataque.
Según informes, la base aérea de Belbek fue atacada nuevamente esta tarde, lo que provocó incendios. Todavía faltan imágenes satelitales claras que demuestren el nuevo ataque.
Belbek fue atacado la noche anterior. Los detalles aún son escasos, pero el Ministerio de Defensa ruso afirmó haber repelido un ataque nocturno de misiles ATACMS de origen estadounidense. Sin embargo, las fotografías iniciales de las consecuencias sugieren que al menos un sistema de defensa aérea terrestre ruso fue alcanzado con éxito.
Los vídeos publicados en las redes sociales muestran explosiones supuestamente cerca de Belbek. Mientras tanto, informes no confirmados que citan a residentes locales sugieren que se escucharon unas 20 explosiones. Estos bien pueden estar relacionados con impactos e intercepciones de misiles, así como con explosiones secundarias.
Reportedly, this is a video of a missile attack on Belbek military airfield in Russian-occupied Crimea. Video posted by Russian Telegram channels. pic.twitter.com/o1w2Dw1i3d
— Anton Gerashchenko (@Gerashchenko_en) May 15, 2024
Las imágenes del sistema de monitoreo de incendios FIRMS (Fire Information for Resource Management System), que proporciona datos de incendios activos casi en tiempo real a través de sensores orbitales infrarrojos, indicaron un grupo de incendios cerca de la línea de vuelo en la base aérea, donde normalmente las aeronaves están estacionadas al aire libre. . (imagen abajo)
Desde entonces se han publicado fotos en las redes sociales que afirman mostrar la destrucción de partes de un sistema de defensa aérea S-300/S-400 ubicado en el aeródromo. En particular, parece que un radar 92N6 'Grave Stone', el principal radar de detección de largo alcance asociado con el S-400, fue alcanzado.
Es posible que algunos de los primeros resultados de esta entrega se hayan visto en un ataque a la base aérea de Dzhankoi, también en Crimea, que alberga varios helicópteros, cazas tácticos y sistemas de defensa aérea terrestres.
Fuentes ucranianas afirmaron que entre tres y cinco sistemas de defensa aérea S-400 y S-300 fueron alcanzados, algo que las imágenes satelitales de alta resolución parecen respaldar.
La base aérea de Belbek ha sido considerada durante mucho tiempo un objetivo importante para Ucrania, con constantes informes de que la instalación ha sido alcanzada. Pero con la llegada de los ATACMS de largo alcance, era sólo cuestión de tiempo antes de que Kiev lanzara un ataque. Ahora, a la espera de la confirmación de la magnitud de los daños, está claro que es muy probable que estos misiles alcancen objetivos en lo profundo de la península de Crimea.
Parece que la base aérea de Belbek fue atacada nuevamente esta noche, con incendios en las instalaciones. Todavía estamos esperando imágenes satelitales claras de la base.
En una declaración publicada hoy en Telegram, el Ministerio de Defensa ruso dijo que anoche sus defensas aéreas derribaron 10 misiles ATACMS sobre Crimea, pero no reveló si se infligieron algún daño.
También en Telegram, el gobernador designado por Rusia del puerto de Sebastopol en Crimea, Mikhail Razvozhayev, informó que restos de misiles habían caído en una zona residencial. Agregó que información preliminar indicó que nadie resultó herido en el ataque.
Aunque Rusia ha afirmado en repetidas ocasiones que se utilizaron misiles ATACMS en ataques específicos, no ha aportado pruebas de ello.
Sin embargo, los escombros que supuestamente fueron localizados en Sebastopol después del ataque de anoche parecen mostrar submuniciones M74, consistentes con el uso de un misil ATACMS equipado con una ojiva de racimo.
Rusia tiende a desplegar sus aviones en Belbek debido a la amenaza de un ataque y al daño que los aviones estacionados cerca pueden causarse entre sí si uno de ellos es alcanzado. Ésta es una dura lección que Rusia ha aprendido una y otra vez.
La base aérea de Belbek, en las afueras de Sebastopol, fue utilizada por Ucrania antes de la anexión de Crimea por parte de Rusia en 2014. Hoy es la sede del 38.º Regimiento de Aviación de Cazas (38 IAP, en nomenclatura rusa). El regimiento vuela una combinación de cazas Su-27 Flanker-B originales no mejorados, Su-27UB Flanker-C biplaza y Su-27SM mejorados, pero se espera que eventualmente sea reequipado con Su-35S Flanker-E. Mientras tanto, algunos aviones biplaza Su-30M2 también se están utilizando para el entrenamiento de la tripulación en preparación para el Flanker más avanzado.
La base desempeña un papel importante en la guerra de Rusia en Ucrania y también ha albergado destacamentos de otros tipos de aviones de combate, incluidos aviones adicionales Su-35S y Su-30SM, así como cazas de ataque Su-34 Fullback e interceptores MiG-31 Foxhound. . El 1 de mayo, los MiG-31 todavía estaban estacionados en la base, según confirman las imágenes de satélite.
En el paquete de ayuda de 61 mil millones de dólares para Ucrania, anunciado el 24 de abril, resultó que Estados Unidos ya había proporcionado misiles ATACMS adicionales. Según se informa, por primera vez se incluyeron variantes de largo alcance, entregadas bajo una operación de transferencia encubierta.
Es posible que algunos de los primeros resultados de esta entrega se hayan visto en un ataque a la base aérea de Dzhankoi, también en Crimea, que alberga varios helicópteros, cazas tácticos y sistemas de defensa aérea terrestres.
Fuentes ucranianas afirmaron que entre tres y cinco sistemas de defensa aérea S-400 y S-300 fueron alcanzados, algo que las imágenes satelitales de alta resolución parecen respaldar.
La base aérea de Belbek ha sido considerada durante mucho tiempo un objetivo importante para Ucrania, con constantes informes de que la instalación ha sido alcanzada. Pero con la llegada de los ATACMS de largo alcance, era sólo cuestión de tiempo antes de que Kiev lanzara un ataque. Ahora, a la espera de la confirmación de la magnitud de los daños, está claro que es muy probable que estos misiles alcancen objetivos en lo profundo de la península de Crimea.
Parece que la base aérea de Belbek fue atacada nuevamente esta noche, con incendios en las instalaciones. Todavía estamos esperando imágenes satelitales claras de la base.
Un par de Mustangs norteamericanos de la 1.ª Fuerza de Exploración, 8.ª Fuerza Aérea, con el chip P-51D volado por Merrill Dewey DuMont en primer plano, detecta un sitio de lanzamiento de cohetes V-2 alemanes cerca del Canal de la Mancha en la primavera de 1945.
Las
unidades V-2 eran móviles y podían desplegarse rápidamente en campo
abierto o en los suburbios de la ciudad, todas estaban fuertemente
defendidas y, por lo tanto, peligrosas de atacar.
Los
exploradores enviarían por radio información sobre la ubicación, las
condiciones climáticas y las defensas, etc. para ayudar a los
bombarderos aliados a atacar estos sitios.
Otros casos casuales de aeronaves aliadas que atacan cohetes V-2 lanzados incluyen los siguientes:
El 29 de octubre de 1944, los tenientes Donald A. Schultz y Charles M. Crane en un P-38 Lightning intentaron fotografiar un V-2 lanzado sobre los árboles cerca del río Rin .
El MGM-31 Pershing fue el primer misil balístico de corto alcance de combustible sólido operativo del Ejército de EE. UU.
País de origen Estados Unidos Entró en servicio 1964 Basando móvil motorizado
Dimensiones y peso
Peso ~ 18 t Longitud ~ 11 m Eslora de casco ~ 5,3 m Ancho ~ 2,7 m Altura ~ 3,5 m
Misil
Longitud del misil 10,5 m Diámetro del misil 1 m Peso de lanzamiento de misiles 4661 kg Peso de la ojiva 190 kg Tipo de ojiva nuclear con un rendimiento de explosión de 50 a 400 kT Alcance de fuego 740 km CEP 400 m Orientación Sistema de navegación inercial Movilidad (chasis M474) Motor Detroit Diesel 6V53 diesel Potencia del motor 212 CV Velocidad máxima en carretera 64 km / h Alcance 485 km
Maniobrabilidad
Gradiente 60% Pendiente lateral 20% Paso vertical ~ 0,5 m Zanja ~ 1,2 m Vadeo ~ 1,2 m
El MGM-31 Pershing fue un misil balístico de corto alcance (SRBM) operado por el ejército de los EE. UU. Durante gran parte de la Guerra Fría. Fue el primer SRBM operativo fabricado en Estados Unidos con un motor de cohete de combustible sólido. Fue declarado operativo en 1964 y estuvo en funcionamiento durante tres décadas.
El misil Pershing se originó a partir de una serie de estudios de la Agencia de Misiles Balísticos del Ejército (ABMA) en 1956, sobre la viabilidad de crear un misil balístico con un alcance de 930 km a 1390 km, como reemplazo del PGM-11 Redstone SRBM. Sin embargo, esto en sí mismo fue casi el final de la historia, ya que más tarde en el mismo año, el secretario de Defensa Charles Erwin Wilson emitió una orden que prohibía al Ejército operar tal arma. Conocido como el "Memorando de Wilson", este documento colocó instantáneamente todos los misiles terrestres con un alcance superior a 320 km bajo la jurisdicción de la Fuerza Aérea de los EE. UU., por lo que el trabajo en el nuevo misil del Ejército no pudo pasar de la fase de "papel". Sin embargo, el concepto obtuvo una nueva vida en 1958, cuando el Departamento de Defensa finalmente rescindió el Memorando de Wilson.
El trabajo se reanudó más tarde en ABMA en 1958, y se determinó que se requerían varias características nuevas para construir un misil práctico de este tipo. La decisión más importante fue utilizar un propulsor sólido en lugar de uno líquido, con el fin de maximizar la capacidad de respuesta y los márgenes de seguridad de las formaciones que utilizan el misil. Por esta razón, inicialmente se llamó "Redstone-S", con el sufijo S que denota un propulsor sólido, aunque finalmente se decidió nombrar el nuevo misil en honor al famoso General John. J "Black Jack" Pershing.
ABMA se acercó a siete fabricantes para ofrecer propuestas de diseño en competencia para el misil Pershing; Chrysler, Lockheed, Douglas, Convair, Firestone, Sperry-Rand y Martin. Wilber M. Brucker, el Secretario del Ejército en ese momento, presionó a ABMA para que seleccionara unilateralmente el diseño ofrecido por Chrysler (Bruckner era anteriormente el gobernador de Michigan donde residía Chrysler, y el anterior PGM-11 Redstone también era un producto de Chrysler). Sin embargo, el general John B. Medaris, jefe del proceso de selección de ABMA, insistió en que la decisión debería dejarse enteramente en manos de ABMA. El 28 de marzo de 1958, el Ejército anunció formalmente que el diseño de Martin fue seleccionado como el ganador.
Sin embargo, la selección de la presentación de Martin no fue una coincidencia. El general Medaris tenía una relación acogedora con esa compañía, como lo demuestra una conversación telefónica de 1956 con el presidente de Martin, George Bunker, en la que Medaris le pidió a Bunker que hiciera que su compañía construyera una fábrica de misiles cerca del Centro de Pruebas de Misiles de la Fuerza Aérea (ahora el Cabo Estación de la Fuerza Aérea Cañaveral) en Florida; a fines del próximo año, la fábrica de misiles de Martin's Sand Lake abrió en Orlando, Florida. Un año después de eso, Martin ganó el contrato para fabricar el nuevo Misil Balístico de Alcance Intermedio (IRBM) para el Ejército de los EE. UU. En la fábrica de Sand Lake. Edward Uhl, quien jugó un papel decisivo en el diseño del M1 Bazooka para el ejército de los EE. UU. En la Segunda Guerra Mundial, y un asociado del general Medaris a través del famoso ingeniero de cohetes alemán Werner Von Braun, era el vicepresidente de Martin en ese momento. y nombrado director general de la nueva fábrica. Además, la "mano derecha" del general Medaris en el proceso de selección era el Dr. Arthur Rudolph, otro colaborador cercano de Von Braun, y ambos habían sido sacados de contrabando de Alemania justo después de la Segunda Guerra Mundial como parte de la Operación Paperclip. El oficial del ejército estadounidense que había sido encargado de supervisar al equipo de científicos de Von Braun en el Arsenal de Redstone (incluido el Dr. Rudolph) no era otro que el general Medaris.
El Ejército también estaba ansioso por promover el misil Pershing al gobierno civil en Washington DC siempre que fuera posible. Por ejemplo, exhibieron el misil al presidente Dwight D. Eisenhower en dos ocasiones como parte del Proyecto MAN (Modern Army Needs), y más tarde en tres ocasiones al presidente John F. Kennedy (incluso durante su desfile de inauguración). Aunque curiosamente, solo en una de estas ocasiones el Pershing fue un sistema de armas operativo.
El trabajo en Pershing tomó casi dos años antes de que se llevara a cabo el primer lanzamiento de Pershing XM14, el 28 de Febrero de 1960, aunque el primer lanzamiento desde un tráiler se produjo el 26 de julio del mismo año. También se desarrolló una versión de entrenamiento inerte del XM14, designada como XM19, aunque ambas designaciones se eliminaron en 1963; los misiles fueron rediseñados como XMGM-31A y XMTM-31B. En última instancia, el misil de entrenamiento nunca se produjo, por lo que el XMTM-31B fue efectivamente "abandonado" por completo.
La fase de desarrollo del Pershing avanzó lentamente y se lanzaron 56 misiles de desarrollo con solo 5 fallas, debido al menos en parte a la aplicación del concepto de gestión "Cero defectos" ideado por el director de control de calidad de Martin, Phil Crosby. Sin embargo, estos se extendieron a lo largo de tres años y tres administraciones presidenciales, y aunque el misil fue clasificado como el MGM-31A Pershing y la producción comenzó en 1962, el trabajo de desarrollo del misil estaba lejos de terminar. El primer lanzamiento operativo tuvo lugar el 20 de agosto de 1963, seguido de 36 lanzamientos de pruebas operativas adicionales en 1967. En 1964, el Pershing finalmente se declaró operativo y comenzó su primer despliegue en el extranjero.
Mientras el Ejército continuaba refinando el MGM-31 Pershing en 1964, el Secretario de Defensa ordenó al Ejército que desarrollara un misil balístico que pudiera prepararse y lanzarse aún más rápido. El Ejército respondió a principios de 1965 con un plan para una versión de Alerta de Reacción Rápida (QRA) del Pershing, que también se promovió como un medio para reemplazar los misiles de crucero MGM-13 Mace que todavía estaban en servicio (una propuesta bastante curiosa en el Ejército parte, ya que el Mace fue desarrollado y operado exclusivamente por la Fuerza Aérea de EE. UU.). Martin Marietta (tras la fusión de estas empresas) obtuvo un contrato para fabricar el QRA Pershing en enero de 1966, y el misil resultante fue designado como MGM-31B Pershing 1A. La capacidad de respuesta del Pershing 1A se aceleró al intercambiar los vehículos terrestres existentes y los sistemas de montaje / lanzamiento por reemplazos más rápidos, e incorporando componentes electrónicos de estado sólido que también hicieron que los preparativos del misil en sí fueran mucho más rápidos. El Departamento de Defensa también inició el Proyecto SWAP en septiembre de 1969, con el objetivo de reemplazar todos los Pershing 1 con los nuevos Pershing 1A a mediados de 1970.
La producción del Pershing 1A comenzó en 1967, aunque dado que el programa fue muy concurrente (es decir, el programa se superpuso a su desarrollo, prueba, producción e implementación por adelantado), se llevaron a cabo más pruebas. El primer lanzamiento operativo (no hubo lanzamientos de desarrollo) del Pershing 1A tuvo lugar el 5 de marzo de 1968 en Gilson Butte en Utah. Este lanzamiento fue exitoso, y se llevaron a cabo 16 lanzamientos operativos adicionales de Pershing 1A entre esa fecha y el 4 de agosto de 1970, solo uno de los cuales fue un fracaso. El Pershing 1A se declaró operativo en 1969 y el Proyecto SWAP se completó el 18 de marzo de 1970, antes de lo previsto.
Más ingeniería de confiabilidad tuvo lugar a mediados de la década de 1970, que aumentó significativamente la disponibilidad y simplicidad del misil Pershing 1A. Una actualización de 1974 redujo el tiempo medio de reparación de 8,7 horas a 3,8 horas, y el tiempo medio entre fallas aumentó de 32 horas a 65 horas. Otra actualización en 1976 hizo muchos cambios electrónicos y mecánicos, que redujeron significativamente la cantidad de tiempo requerido para lanzar el misil y aumentaron su precisión.
El misil Pershing 1 tiene forma cilíndrica, con una nariz larga, cónica y cilíndrica que se estrecha nuevamente en un ángulo aún más superficial cerca de la punta. El cuerpo principal detrás de la nariz se compone de dos secciones de refuerzo de igual longitud, con tres aletas cuadradas en un patrón de crucifijo de 90 grados en la cola de la segunda etapa, y tres pequeñas aletas triangulares en la cola de la primera etapa en la base. del misil completo. La primera y la segunda etapa tienen cada una una sola boquilla de empuje, que está empotrada en el cuerpo principal. El Pershing 1A es prácticamente idéntico en apariencia.
El MGM-31A Pershing 1 y el MGM-31B Pershing 1A se lanzan desde diferentes vehículos. El Pershing 1 se transporta y lanza desde un vehículo de transporte con orugas M474, un derivado del transportador de carga con orugas M548 (que a su vez es una variante de transporte blindado de personal M113). Un solo pelotón constaba de cuatro vehículos y llevaba un misil (por el contrario, un pelotón de Redstone requería veinte vehículos). El M474 llevaba un solo Pershing 1 y permitía transportarlo fácilmente a campo traviesa en una amplia gama de tipos de terreno, aunque fue duramente criticado por su baja velocidad. Una variante adicional del M474 llevaba la ojiva, las aletas del misil y el conjunto de colocación de azimut, mientras que un tercer vehículo llevaba la estación de prueba del programador y un sistema de central eléctrica, mientras que un cuarto llevaba un terminal de radio AN / TRC-80.
En cambio, el MGM-31B Pershing 1A empleó remolques tirados por camiones tractores. Los camiones transportaron los misiles y su equipo asociado por carreteras mucho más rápido, pero requirieron el doble de plataformas (cada camión tiraba de un remolque), y su movilidad a campo traviesa era notablemente menor que la del M474. El misil en sí fue transportado sobre un remolque M790, tirado por un camión tractor M757 (las unidades de la Luftwaffe alemana utilizaron el tractor Magirus-Deutz Jupiter 6x6 en su lugar). Los pelotones de Pershing 1A del Ejército de los EE. UU. Transportaron su estación de prueba de programadores y unidades de estación de energía en camiones M656 (la Luftwaffe empleó camiones Magirus-Deutz o MAN), y otro camión llevó un centro de control de batería. El vehículo de la estación de prueba del programador se usó para controlar tres remolques Transporter Erector Launcher (TEL), pero solo podía operar uno a la vez, y los cables de control tenían que desconectarse de un remolque vacío y enchufarse a un remolque cargado. Sin embargo, estos cambios no fueron baratos; mientras que el Pershing 1 tuvo un costo unitario de $ 1,74 millones, el Pershing 1A terminó costando $ 5,42 millones.
El sistema de guía del Pershing es un sencillo sistema de navegación inercial (INS). La precisión fue mediana, con un CEP de unos 400 m; aunque esto es lo suficientemente bueno para que un misil derrote de manera confiable a la mayoría de los objetivos de superficie en un área amplia, ya que llevaba una ojiva nuclear. Sin embargo, los objetivos subterráneos endurecidos probablemente requerirían múltiples misiles para destruir. Sin embargo, si bien la orientación pura del INS tiende a ser inexacta, tiene la ventaja de ser invulnerable a las contramedidas electrónicas.
Aunque el Pershing es un misil balístico, sus aletas son orientables para permitirle realizar correcciones de rumbo minuciosas en el aire, lo que le permite alcanzar objetivos en una amplia gama de rangos, trayectorias y rumbos.
El sistema de propulsión del Pershing es un sistema de dos etapas. La primera etapa es un cohete Thiokol TX-174 con un tiempo de combustión de 38,3 segundos, mientras que la segunda etapa es un cohete Thiokol TX-175, con un tiempo de combustión de 39 segundos. Ambos son motores de combustible sólido, lo que elimina los muchos peligros asociados con el combustible líquido para cohetes, así como el tiempo de respuesta lento; mientras que muchos misiles de combustible líquido tardan varios minutos en completar sus celdas de combustible antes del lanzamiento, el Pershing se puede lanzar inmediatamente si ya está en posición.
El cohete TX-174 eleva el misil a la atmósfera superior, después de lo cual se agota el combustible y se desecha el motor de la primera etapa. Cuando la primera etapa comienza a caer, el cohete TX-175 en la segunda se enciende y lleva el misil a una órbita baja. A medida que se agota el combustible de la segunda etapa, esta etapa también se desecha, dejando solo el cono de la nariz del misil cuando alcanzó su apogeo de 150 km. Antes de volver a entrar en la atmósfera, la ojiva se orienta hacia el rumbo correcto y, cuando comienza su descenso a la fase terminal, se imparte un giro para proporcionar estabilidad durante el descenso. Como ocurre con la mayoría de los misiles balísticos, la fase terminal es bastante breve y el Pershing 1 alcanza su objetivo en cuestión de minutos.
El rendimiento resultante del misil fue sustancial. Rápidamente alcanzó una velocidad de vuelo de Mach 8 (9 878 km / h) después del lanzamiento, lo que le permitió alcanzar un objetivo a un alcance máximo de 740 km en aproximadamente 5 minutos. Estas capacidades también fueron ilustrativas de los rápidos avances en las tecnologías de misiles y cohetes estadounidenses. Por ejemplo, el Redstone de 21 m de largo tenía un alcance de 320 km, mientras que el Pershing tenía un poco más de la mitad del tamaño, pero tenía más del doble de alcance.
La carga útil del Pershing es la ojiva termonuclear W-50. Esta munición de 176 kg tiene un rendimiento variable, con configuraciones para 50 kT, 200 kT o 400 kT. El Pershing nunca ha estado armado con una ojiva convencional, quizás debido a su precisión mediocre.
Se produjeron un total de 754 MGM-31A Pershing 1 entre 1960 y 1969, y 754 MGM-31B Pershing 1A entre 1967 y 1969. Los únicos operadores del Pershing fueron los Estados Unidos y Alemania Occidental. La adquisición del Pershing por parte de Alemania Occidental fue un tema incómodo y polémico, ya que su constitución prohibía expresamente que la Bundeswehr poseyera artillería nuclear. Para que Alemania Occidental despliegue sus propios SRBM, se llegó a un compromiso por el cual la Bundeswehr adquiriría los misiles, pero las ojivas se guardarían en bases militares estadounidenses en Europa Central y se entregarían a la Bundeswehr solo cuando se creyera que la guerra era inminente. Nunca surgió tal conflicto y, por lo tanto, ningún Pershings se lanzó con ira.
El despliegue de misiles Pershing en Alemania Occidental también fue bastante irónico en un contexto histórico, dado que John Pershing jugó un papel fundamental en la derrota de Alemania durante la Primera Guerra Mundial, e incluso ordenó que todos los soldados alemanes capturados que hubieran recibido bayonetas de sierra o lanzallamas fueran para ser ejecutado en el acto (que fue y sigue siendo un crimen de guerra; el uso de bayonetas y lanzallamas no lo es).
El final del programa Pershing 1 llegó en 1987, cuando los gobiernos de Estados Unidos y la Unión Soviética firmaron el Tratado de Fuerzas Nucleares de Alcance Intermedio (o tratado INF), que entre otras armas, prohibió el uso de SRBM y IRBM. De conformidad con este tratado, el ejército de los EE. UU. retiró todos sus Pershings restantes para finales de la década de 1980, los fuselajes y motores fueron destruidos. El último Pershing 1 restante fue destruido en 1991, excluyendo los misiles que fueron desmoldados con fines de exhibición. Sin embargo, las ojivas de los Pershings se conservaron y se reutilizaron en variantes de la bomba nuclear B-61.
Variantes
XMGM-31A: Prototipo del MGM-31A. Inicialmente designado XM14.
XMTM-31B: Prototipo para una versión de entrenamiento del misil Pershing. Inicialmente designado XM19. No entró en producción.
MGM-31A Pershing 1: Modelo de producción inicial, como se describe arriba. El Pershing 1 se transporta y lanza desde un vehículo de transporte con orugas M474, un derivado del transportador de carga con orugas M548 (que a su vez es una variante de transporte blindado de personal M113). Se produjeron un total de 754 MGM-31A Pershing 1 entre 1960 y 1969.
MGM-31B Pershing 1A: sistemas Pershing 1 mejorados con un nuevo TEL de emplazamiento más rápido y nuevos vehículos de apoyo de movimiento más rápido. Empleó remolques tirados por camiones tractores M757. Este misil mejorado podría prepararse y lanzarse más rápido. El misil en sí también se ha mejorado, con nuevos sistemas eléctricos y electrónicos, incluidos circuitos de estado sólido. Eso también hizo que los preparativos del misil en sí fueran mucho más rápidos. El MGM-31B Pershing 1A se declaró operativo en 1969. Tenga en cuenta que esta arma fue un desarrollo del MGM-31A de producción, no del XMTM-31B en desarrollo. Se produjeron un total de 754 MGM-31B Pershing 1A entre 1967 y 1969.
Pegasus: Lanzador de satélites propuesto que se construirá utilizando misiles Pershing 1 convertidos. Parece que no se construyó ninguno.
MGM-31C Pershing 2 IRBM. A pesar de compartir el mismo número de designación y nombre, en realidad era un sistema de armas no relacionado.
Curtis LeMay no podía entender que sus bombarderos corrieran el peligro de verse socavados como un elemento disuasorio creíble por el avance de la tecnología. En términos estratégicos, estaban llegando a representar el pasado. No estaba prestando atención a la advertencia de von Kármán a Arnold en 1945 de que “los hombres a cargo de las futuras Fuerzas Aéreas deben recordar siempre que los problemas nunca tienen soluciones definitivas o universales y solo una actitud inquisitiva constante hacia la ciencia y una adaptación incesante y rápida a los nuevos desarrollos puede mantener la seguridad de esta nación a través de la supremacía aérea mundial ". Los sucesores de Stalin después de su muerte el 5 de marzo de 1953, inicialmente un comité y luego Nikita Khrushchev solo cuando venció a sus rivales, no tenían la intención de depender de los bombarderos para contrarrestar el poder nuclear de Estados Unidos. Los bombardeos de largo alcance no formaban parte de la experiencia militar rusa. Los aviones que habían desplegado durante la Segunda Guerra Mundial, como el famoso cazabombardero Il-2 Shturmovik de Sergei Ilyushin, fueron diseñados para apoyar al Ejército Rojo como artillería voladora y cazacarros. Construyeron bombarderos, pero estos eran principalmente tipos de alcance medio, nuevamente destinados a mejorar el poder de combate del ejército. Las copias Tu-4 de Tupolev del B-29 en las que Stalin había prodigado recursos en el período inmediato de la posguerra no eran prácticas debido a su falta de alcance. Los soviéticos nunca podrían superar este obstáculo. No había forma, salvo ir a la guerra, para que adquirieran el tipo de bases de operaciones con las que LeMay había rodeado su imperio y, debido a las distancias involucradas, el reabastecimiento de combustible en el aire tampoco era una respuesta. Con todo lo que tenía que despegar de la Unión Soviética o sus satélites, los petroleros, para mantenerse en el aire, estarían consumiendo el combustible que se suponía debían pasar a los bombarderos.
Los rusos también tuvieron dificultades con los bombarderos de largo alcance de su propio diseño. Como aspirante a intercontinental, el Bison tenía un alcance deficiente a unas 5.600 millas y el turbohélice Bear era vulnerable a los aviones de combate estadounidenses. Ninguno de los dos se acercó a ser igual al B-52. El diseñador del Bison, Vladimir Miasishchev, sugirió a Jruschov que podrían superar la deficiencia de alcance aterrizando en México después de bombardear Estados Unidos. "¿Qué crees que es México, nuestra suegra?" Respondió Jruschov. “¿Crees que podemos llamar cuando queramos? Los mexicanos nunca nos dejarían recuperar el avión ”.
Por otro lado, Rusia tenía un largo historial de cohetes experimentales y teorías visionarias de los viajes espaciales, comenzando con los escritos de finales del siglo XIX de Konstantin Tsiolkovsky, un profesor de matemáticas provincial con sueños y conocimientos de física. El mariscal Tukhachevsky, la estrella del liderazgo del Ejército Rojo antes de la guerra, tenía un gran interés en los cohetes, viéndolos como una forma de lanzar grandes cargas de explosivo más allá del alcance de la artillería convencional. Estableció un floreciente laboratorio de cohetes militares en Leningrado en la década de 1920. Uno de sus inventos, un prototipo de bazuca, podría haber resultado bastante útil contra los tanques alemanes. Pero después de que Stalin hiciera purgar y ejecutar a Tukhachevsky en 1937 durante la Gran Purga, el laboratorio fue suprimido y unos 200 de sus especialistas sufrieron el destino del mariscal. Sin embargo, varios de los científicos e ingenieros más imaginativos, incluido Sergei Korolev, que se convertiría en el principal diseñador de cohetes soviéticos en la posguerra, consiguieron evadir la bala de un verdugo. El Ejército Rojo también empleó la artillería de cohetes que había desarrollado con un efecto poderoso durante el conflicto. El soldado alemán había temblado ante las salvas de alto explosivo de las baterías acumuladas de cohetes Katyusha de 122 mm.
Al final de las hostilidades, la planta de producción V-2 a prueba de bombas hizo un túnel en una montaña cerca de Nordhausen en el centro-norte de Alemania y funcionó a toda máquina con las vidas de miles de trabajadores esclavos que resultó estar ubicada dentro de la zona de ocupación soviética. También lo fueron las instalaciones de prueba del motor V-2 en las montañas Frankenwald. Sin embargo, el Ejército de Estados Unidos llegó primero a la planta de Nordhausen y se llevó toda la documentación junto con tantos V-2 intactos como pudo antes de que se formalizaran las líneas de ocupación. Pero quedaban suficientes piezas y motores para servir a los rusos. Los estadounidenses también consiguieron lo mejor de los ingenieros de cohetes alemanes del grupo de 400 cohetes que, con Wernher von Braun, habían huido hacia ellos. Los soviéticos todavía se las arreglaban, a veces voluntariamente y a veces por la fuerza, para reunir su propio grupo de cohetes alemanes competentes. El líder era un ingeniero llamado Helmut Gröttrup, un izquierdista que vino a los rusos voluntariamente. Había sido uno de los principales especialistas en orientación y control de Peenemünde. En total, cerca de 5.000 ingenieros y técnicos alemanes de diversas habilidades fueron detenidos y transportados a la Unión Soviética para el trabajo con cohetes. Los planos del V-2 y la documentación asociada fueron reconstruidos, los V-2 de fabricación alemana se ensamblaron y dispararon, y copias luego fabricadas por los propios soviéticos.
A medida que los rusos adquirieron suficiente experiencia propia, los alemanes se volvieron superfluos y fueron enviados de regreso a casa. En los años siguientes se logró un progreso constante en el diseño de misiles balísticos más avanzados bajo la dirección de Korolev y el fabricante de motores de cohetes Valentin Glushko. Los herederos de Stalin marcaron firmemente el rumbo de la Unión Soviética a finales de 1953. El Politburó del Partido Comunista, el máximo órgano de gobierno, decidió formalmente que Korolev creara un misil balístico intercontinental que llevaría como ojiva la bomba de hidrógeno que los rusos eran adquirir dos años más tarde, en noviembre de 1955. Andrei Sakharov, el más talentoso de los jóvenes físicos soviéticos, acababa de completar su diseño preliminar para el arma de hidrógeno rusa en noviembre de 1953. Mientras continuaba el desarrollo de los bombarderos, la aparición del Bison y Bear demostró, la decisión del Politburó se mantuvo. Se había trazado el patrón del futuro. La Unión Soviética dependería, no de los bombarderos como LeMay seguía pensando que lo haría, sino de misiles balísticos intercontinentales para lanzar la mayoría de sus ojivas nucleares.
Si los soviéticos hubieran desplegado una fuerza considerable de misiles balísticos intercontinentales con ojivas nucleares antes de que Estados Unidos poseyera armas equivalentes o las tuviera en marcha, el pánico ciertamente se habría producido en casa y entre los aliados de Estados Unidos en Europa. El Comando Aéreo Estratégico de LeMay habría sido superado. SAC habría dejado de ser, en la mente de gran parte del público estadounidense y entre los europeos occidentales, una fuerza disuasoria creíble. La aparición de los bombarderos Bison y Bear ya había suscitado preocupaciones sobre la seguridad de las bases del SAC más allá de la simple a principios de la década que había provocado el estúpido plan de bombarderos anfibios de Bennie Schriever. Los misiles balísticos intercontinentales soviéticos en cantidad habrían transformado esas preocupaciones en un temor genuino de que el SAC pudiera ser eliminado en un ataque sorpresa y los Estados Unidos se fueran sin los medios adecuados de represalia.
LeMay necesitó seis horas para cargar armas nucleares en todos sus bombarderos y hacerlos volar. Los radares estadounidenses del día darían solo quince minutos de advertencia de un asalto de misiles balísticos intercontinentales porque los radares no podían detectar las ojivas de misiles entrantes hasta que hubieran alcanzado su apogeo a la mitad de su vuelo. Algunos bombarderos SAC podrían mantenerse en alerta de franja, como siempre se hacía, y algunos podrían rotarse en alerta aérea, pero esto nunca podría ser más que una parte de la fuerza. Mantener a todo SAC permanentemente en alerta las veinticuatro horas del día no era factible. La tarea habría requerido triplicar la tripulación de la aeronave y duplicar o triplicar el personal de tierra y el personal de apoyo. LeMay habría argumentado, y con lógica, que en circunstancias reales habría suficiente advertencia de una guerra inminente con los rusos para que él preparara sus bombarderos. Habría discutido en vano, porque muchos no le habrían creído.
(En 1960, tres años después de que LeMay partiera para convertirse en vicejefe de personal de la Fuerza Aérea, SAC alcanzó una dotación de personal de 266.788 oficiales, hombres y especialistas civiles y pudo mantener un tercio de sus bombarderos y petroleros en quince minutos. El año siguiente, el SAC adoptó una alerta aerotransportada en la que algunos de sus bombarderos estaban siempre en el aire y en la estación esperando una orden de marcha, junto con un puesto de mando aerotransportado permanente, llamado Looking Glass, bajo un oficial general. Los aviones del puesto de mando volaban turnos de ocho horas día y noche en petroleros KC-135 convertidos equipados con comunicaciones, radares y otros equipos necesarios para dirigir los bombarderos de SAC. Pero la ecuación estratégica estaba cambiando en 1960 y 1961. Los bombarderos de SAC ya no eran tan importantes Antes, cuando los bombarderos representaban todo lo que tenía el país, ni siquiera un tercio de la fuerza en alerta perpetua de quince minutos podría haber sido suficiente para silenciar a los escépticos y alarmistas como Paul Nitze, que estaban en una alerta perpetua propia para despertar y batir el miedo.)
Cuando el sistema de infrarrojos basado en el espacio detectó misiles balísticos, las tropas estadounidenses tuvieron tiempo de ponerse a cubierto.
Por Kyle Mizokami
16 de septiembre de 2020
Un sistema estadounidense diseñado para advertir sobre ataques con misiles enemigos detectó con éxito un ataque con misiles iraní en enero. La alerta temprana dio a las tropas estadounidenses en su base iraquí tiempo para ponerse a cubierto. El personal de la Fuerza Aérea de los Estados Unidos en Colorado detectó y monitoreó el ataque en tierra.
La Fuerza Aérea de los EE. UU. atribuye a una oscura pero importante constelación de satélites militares el haber salvado vidas estadounidenses. El sistema de infrarrojos basado en el espacio (SBIRS) detectó el lanzamiento de hasta una docena de misiles balísticos iraníes en enero, información que se pasó a las tropas estadounidenses en la base aérea iraquí objetivo. Si bien el ataque hirió a más de 100 hombres y mujeres estadounidenses en servicio, no provocó muertes ni lesiones graves.
El ataque tuvo lugar el 7 de enero de 2020. El gobierno iraní, en represalia por el asesinato selectivo por parte de Estados Unidos del general Qassem Soleimani del Cuerpo de la Guardia Revolucionaria de Irán, lanzó más de una docena de misiles balísticos contra las fuerzas estadounidenses ubicadas en la base aérea de Al Asad y la ciudad de Irbil. Aunque el presidente Donald Trump aseguró a Estados Unidos que no hubo víctimas como resultado del ataque, más tarde se reveló que más de 100 soldados sufrieron lesiones cerebrales.
Pero podría haber sido peor. La razón por la que las lesiones fueron tan limitadas, dice la Fuerza Aérea, es porque el ataque se detectó antes de tiempo, desde el espacio. Según C4ISRNet, el Programa de Apoyo a la Defensa (DSP) de la Fuerza Aérea, que está diseñado para detectar lanzamientos de misiles balísticos en todo el mundo, notó el ataque y pudo brindar una alerta temprana, lo que permitió a las tropas estadounidenses refugiarse en su lugar.
Satélite SBIRS.
Durante la Guerra Fría, el Pentágono creó una extensa red mundial de sensores para detectar lanzamientos de misiles. Un aspecto de esta red fue el SBIRS. Si bien los radares terrestres de EE. UU. solo podían detectar los misiles entrantes a medida que se elevaban a la vista sobre Estados Unidos, los satélites con sensores infrarrojos podrían estar estacionados permanentemente en órbita sobre la Unión Soviética, China y cualquier otro adversario imaginable, listos para detectar las columnas de calor escape de un misil balístico.
SBIRS consta de cuatro satélites en órbita geosincrónica y dos en órbitas terrestres altamente elípticas, cada uno armado con sensores infrarrojos. La cobertura del SBIRS es desconocida, pero aparentemente cubre una gran parte del mundo, y los sensores son lo suficientemente sensibles como para detectar lanzamientos aún más pequeños, como los lanzamientos de misiles Scud de 1991 de Irak contra Arabia Saudita e Israel.
En 2015, la Fuerza Aérea señaló que la constelación SBIRS tenía la capacidad de detectar fenómenos naturales basados en la Tierra, como incendios forestales y erupciones volcánicas, aunque no se sabe si el servicio compartió dicha información con las partes interesadas.
El Jefe de Operaciones Espaciales de EE. UU., el general John "Jay" Raymond, reconoció al segundo escuadrón de advertencia espacial en la Base de la Fuerza Aérea Buckley en Colorado por detectar el ataque y proporcionar información de advertencia al Comando Central de EE.UU.
La historia de la lucha contra la amenaza del V-2 alemán, el primer misil balístico, y en menor grado contra el V-1, el primer misil de crucero, es la historia de un descubrimiento casual de una actividad alemana inexplicable, los intentos de comprender lo que significaban las fotos aéreas, y la negativa de los científicos superiores a reconocer la nueva tecnología con la que no estaban familiarizados.
Primer descubrimiento
El 15 de mayo de 1942, un Spitfire solitario se dirigió a una misión de reconocimiento fotográfico sobre el puerto de Kiel en el Mar Báltico. Desde allí debía volar a Swinemuende, un pequeño aeródromo militar en el extremo sur de la isla de Usedom. A unos 250 kilómetros al este de Kiel, cuando estaba cerca de su objetivo, el piloto notó que otro pequeño aeródromo, ubicado en el norte de Usedom, se estaba ampliando y se estaban realizando grandes obras de construcción. El repentino ajetreo en esta área generalmente desolada llamó su atención, y encendió sus cámaras por un corto tiempo, luego continuó con su objetivo original y regresó a la base.
Cuando se revelaron las imágenes, se descubrió que el piloto fotografió un lugar llamado Peenemünde al que hasta entonces nadie había prestado atención. Las fotos mostraban que efectivamente se estaban realizando grandes construcciones allí. Lo más interesante fueron los refugios circulares, claramente discernidos en las fotos, que eran más grandes de lo habitual para las armas antiaéreas. Los intérpretes fotográficos no tenían explicación, y las imágenes se archivaron debidamente y los archivos se guardaron en la parte posterior.
Hoy sabemos que el centro de desarrollo y producción de las "Armas de Venganza" alemanas (Vergeltungwaffen), y especialmente el V-1 y V-2, se encuentra en ese lugar poco poblado desde 1936, para mantenerlo alejado de posibles observaciones. y esconde el ruido inusual de los motores de cohetes. Además, su aislamiento y proximidad al mar permitieron las pruebas de vuelo sin el peligro de que misiles perdidos golpeen una región poblada.
Un programa de pruebas tan ambicioso no pudo mantenerse en secreto durante mucho tiempo, y a partir de diciembre de 1942, un flujo constante de informes sobre una posible conexión entre Peenemünde y las "armas secretas" llegó a la inteligencia británica, que estaba cada vez más interesada en el lugar. Estos se unieron a la mención inicial de Peenemünde y las armas de largo alcance, incluidos los cohetes, en el Informe de Oslo, que la inteligencia británica recibió en noviembre de 1939 y que inicialmente no se tomó en serio.
En marzo de 1943 surgió nueva información sobre los cohetes. Esta fue la transcripción de una conversación entre dos generales alemanes tomados como prisioneros después de El Alamein en África del Norte a fines de 1942. Uno era Wilhelm Ritter von Thoma, quien comandaba la armadura de Rommel, y el segundo. fue Ludwig Cruewell, quien fue el segundo al mando de Rommel. Los dos se separaron y se reunieron solo cuatro meses después en una sala llena de dispositivos de escucha. Von Thoma le dijo a Cruewell que una vez había visto los cohetes en Alemania. Sabiendo que su prisión estaba en algún lugar cerca de Londres, pero no escuchó ninguna gran explosión, pensó que el programa de cohetes probablemente se retrasó. También dijo que estos cohetes estaban destinados a ser disparados contra objetivos de área grande y que en su camino treparon alto en la estratosfera (R. V. Jones 1978, 333).
La aparente importancia de Peenemünde para los alemanes se vio reforzada por un descifrado de una transmisión Enigma del ministerio del aire alemán que se ocupa de las asignaciones de gasolina a varias estaciones de investigación, enumeradas según algún orden de precedencia. Peenemünde fue segundo en la lista, muy por delante de otros organismos cuya importancia era conocida (R. V. Jones 1978, 348). (Este es un excelente ejemplo de cómo la inteligencia puede aportar ideas importantes integrando fragmentos de información aparentemente no relacionados. ¿Qué tienen que ver las prioridades en la asignación de gas con el desarrollo de armas de largo alcance?)
En vista de la acumulación de tales pruebas, se preparó una sesión informativa detallada para los jefes de personal. Estos, junto con el primer ministro, acordaron que esta actividad alemana constituía un peligro y decidieron crear un grupo de trabajo especial para el "Problema de Peenemünde". Se nombró a un alto funcionario de inteligencia llamado Duncan Sandys (quien era yerno de Churchill) para encabezar este comité, y se intensificó el reconocimiento fotográfico de la zona, pero todo el esfuerzo sufrió un problema básico: nadie sabía exactamente lo que estaban buscando o cómo debería ser, si se descubriera. Otro problema crítico (que se dio cuenta mucho más tarde) fue el hecho de que, en nombre de la "compartimentación de seguridad", no se consultó a varios organismos profesionales, incluida la compañía "Shell", que investigó sobre la propulsión de cohetes.
Finalmente, en junio de 1943, se resolvió parte del misterio. Una "columna vertical muy gruesa de unos cuarenta pies de altura" fue fotografiada en uno de los refugios. Unos días más tarde, las fotografías revelaron objetos reales como cohetes que yacen horizontalmente en vehículos de carretera dentro de los refugios, aunque "el informe redactado con cautela los describió como" torpedos como objetos de treinta y ocho pies de largo "(Babington-Smith 1957, 150). Algunas personas pensaron que en realidad eran armas de largo alcance (aunque nadie pensaba en misiles guiados), mientras que otras rechazaron esta conclusión de inmediato.
El gran debate
Junio de 1943 trajo una crisis en el debate sobre el significado de lo que se encontró en Peenemünde. No había dudas sobre el tamaño de los objetos. A partir del creciente stock de fotos aéreas e informes de agentes en el suelo, estaba claro que la longitud de estos cohetes (si de hecho eran cohetes) era de unos diez a once metros con un diámetro de unos dos metros. La primera diferencia de opiniones fue sobre su modo de propulsión. Todos los involucrados asumieron a priori que si estos eran realmente cohetes, entonces utilizarían combustibles sólidos. Todos sabían acerca de los combustibles sólidos, y la balística interna de los cohetes de combustible sólido se entendía razonablemente bien.
Los combustibles sólidos de ese período se basaban en la cordita, que también se usa como propelente en las municiones estándar. En municiones, la presión de la recámara alcanza varios miles de bares, pero en un motor de cohete la presión de trabajo habitual es de treinta a ochenta bares. En un cohete de combustible sólido, la carcasa que contiene el combustible tiene que soportar estas presiones. Suponiendo una presión de trabajo razonable, y considerando el tamaño de los cohetes observados, una carcasa de acero (con un factor de seguridad razonable) habría tenido un grosor de aproximadamente dos pulgadas y pesaba unas veinte toneladas. Agregando a esto el peso del combustible (en el volumen observado) y la ojiva, este cohete habría pesado en su lanzamiento unas cuarenta toneladas. Esto significaba que solo para comenzar a moverse, y mucho menos para acelerar, el motor del cohete tenía que entregar más de cuarenta toneladas de empuje. Esas veinte toneladas de combustible no habrían bastado para enviar el cohete a una distancia significativa.
El profesor Lindemann, asesor científico de Churchill, objetó con vehemencia cualquier interpretación de estos hallazgos como cohetes, basando sus objeciones en las consideraciones anteriores de peso y empuje.
Debido a su papel en muchas de las controversias sobre los logros alemanes en tecnología, una breve descripción de Frederick Alexander Lindemann está en orden. Lindemann fue un físico de renombre mundial que enseñó en Oxford. Durante la Primera Guerra Mundial, se ofreció como voluntario para unirse al Flying Corps, pero fue rechazado por el deber de volar debido a un mal ojo. En cambio, fue enviado al centro de investigación aeronáutica en Farnborough. Allí desarrolló el método para recuperarse de un giro. En ese momento, el giro era casi siempre fatal, y pocos pilotos se recuperaron de él mientras entendían realmente cómo lo hicieron. Lindemann desarrolló la teoría y luego aprendió a volar por su cuenta. Cuando se sintió lo suficientemente seguro como para tomar un avión, entró en un giro y se recuperó. Todos los estudiantes de vuelo de hoy practican esta técnica.
A finales de los años veinte, Lindemann se convirtió en uno de los amigos más cercanos de Churchill (que en ese momento no tenía ningún cargo). Cuando los nazis llegaron al poder, apoyó a Churchill, que estaba en contra de ellos e instó al gobierno a fortalecer la fuerza aérea. Aunque Lindemann descendía de una familia que emigró de Alemania en el siglo XIX, él también odiaba a los nazis y ayudó a los físicos judíos que escaparon de Alemania. Cuando Churchill se convirtió en el primer ministro, hizo de Lindemann su asesor científico y lo consultó sobre muchos temas. Entre otras actividades, Lindemann estableció el Departamento de Análisis Estadístico, que recopilaba continuamente todos los datos sobre la economía británica y elaboraba un conjunto de informes y presentaciones que permitían a Churchill tener una imagen, casi en tiempo real, de los recursos económicos de la Nación. Todo esto antes de la era de la computadora! Pero también era muy obstinado, menospreciaba a quienes consideraba sus inferiores intelectuales y tenía la costumbre de encontrar fallas en todo (Bowen 1987, 75; Keegan 2003, 331). Una vez que se convenció de algo, fue muy difícil hacerle cambiar de opinión.
A finales de 1934, el ministerio del aire estableció un comité para investigar formas de mejorar la defensa aérea de Gran Bretaña, el Comité para el Estudio Científico del Aplazamiento Aéreo (CSSAD), también denominado Comité Tizard, en honor a su presidente, Henry Tizard, otro famoso científico. Dos miembros más eran científicos (uno actual y un futuro premio Nobel) y dos funcionarios que estaban involucrados en la política de investigación y desarrollo. Churchill presionó al comité para que aceptara a Lindemann como miembro. Sin embargo, Lindemann, que tenía varios proyectos propios, especialmente en el campo de infrarrojos, exigió que se los considerara para el desarrollo. Después de un año de conflictos, los dos científicos del comité renunciaron y el comité se disolvió, pero luego se volvió a reunir con sus miembros originales y un científico adicional.
Cuando estalló la guerra, Lindemann continuó como asesor de Churchill y, como tal, acompañó a Churchill a todas las reuniones. Sin embargo, su obstinación y adhesión a los prejuicios (científicos), incluso cuando los hechos demostraron concluyentemente que estaba equivocado, deterioraron sus relaciones con muchos de sus colegas. Estaba en contra del uso de "ventana", contra la asignación de radares centimétricos a la caza submarina, al menos mientras estos radares fueran escasos, y no creía que los alemanes estuvieran desarrollando dispositivos electrónicos para la navegación de bombarderos. Sin duda su contribución al esfuerzo de guerra fue considerable, pero no hay duda de que muchas veces su comportamiento causó retrasos. Sus opiniones sobre lo que estaba sucediendo en Peenemünde, si no fueron bloqueadas por otros científicos, podrían haber causado un daño real, tal vez incluso retrasar los desembarcos de Normandía. El resultado final probablemente hubiera sido el mismo, pero en este tipo de guerra la victoria se logra por puntos, en lugar de por un golpe de gracia, y estos puntos tienen un precio universal: la sangre.
Basado en tecnología de combustible sólido y consideraciones de peso, sus objeciones eran correctas, pero un científico de su prestigio debería haber considerado o estar al tanto de otras posibilidades. Su explicación de que estos eran algún tipo de torpedos en el aire fue descartada de inmediato. No había avión en Alemania que pudiera transportar un torpedo tan grande. Lindemann luego propuso que todo esto era una especie de engaño. Pero como era obvio que Peenemünde era una instalación importante, ¿cuál habría sido el punto de crear un engaño que, en el mejor de los casos, hubiera llamado la atención sobre el lugar y, en el peor de los casos, derribado un bombardeo?
A finales de junio de 1943, tuvo lugar otra reunión sobre Peenemünde en la sede de Churchill. Ante las fuertes objeciones de Lindemann, se decidió bombardear a Peenemünde para eliminar la amenaza. Luego se produjo otro debate: ¿el objetivo debería ser el desarrollo y las instalaciones de producción, o deberían ser las áreas de residencia de los científicos? Se decidió bombardear las residencias. El ataque fue pospuesto varias veces y tuvo lugar a mediados de agosto. La marca del objetivo exacto por parte de los "pioneros" (aviones mosquitos que arrojan bombas incendiarias de colores) no fue lo suficientemente precisa, y solo el borde de las viviendas de los científicos fue alcanzado, con la pérdida de unos 130 científicos y técnicos alemanes. La mayor parte de las bombas cayeron sobre las viviendas de los trabajadores forzados extranjeros, donde murieron alrededor de seiscientos.
El daño no fue tan extenso como se esperaba, pero los alemanes aún tenían que completar las reparaciones y traer reemplazos para las víctimas. También decidieron dispersar las instalaciones para minimizar el daño futuro de los bombardeos. Todas estas medidas retrasaron el programa durante un tiempo considerable. Las opiniones difieren en cuanto a la extensión de este retraso, de un mes a seis meses, pero no hay duda de que la incursión impidió que los alemanes combinaran los ataques V-2 con el V-1 (las bombas voladoras que se desarrollaron en paralelo a los misiles balísticos V-2). Tales ataques paralelos, si hubieran tenido lugar, habrían puesto una carga insoportable en las medidas de defensa británicas. La demora permitió a los británicos organizarse mejor, incluida la activación de un plan de engaño sobre los puntos de impacto de los misiles V-2 que llegaron a Londres, lo que provocó que los alemanes corrigieran sus trayectorias para golpear los campos vacíos.
Las disputas internas británicas
Con el tiempo, se revelaron más detalles sobre la conducta de algunas personas, del lado británico, que tuvieron acceso a los hallazgos de Peenemünde o fueron consultados sobre ellos. Uno de estos que constantemente argumentó que los "objetos" de Peenemünde no podían ser cohetes de largo alcance basados en cordita fue el Dr. A. D. Crow. El Dr. Crow estuvo a cargo del desarrollo de municiones en el Ministerio de Abastecimiento británico y el director de todos los programas de desarrollo de cohetes en Gran Bretaña. A fuerza de su posición, estuvo presente en todas las reuniones que trataron los hallazgos de Peenemünde (incluido el grupo de trabajo Sandys), pero debido a que inicialmente no estaba familiarizado con la tecnología de combustible líquido, rechazó cualquier sugerencia de que los objetos misteriosos constituían amenaza.
Resultó que incluso él no conocía todos los detalles. A principios de 1941, mucho antes de los eventos descritos, el Ministerio de Abastecimiento británico contrató a la compañía "Shell" para desarrollar motores de cohetes para acortar la carrera de despegue de los aviones. (Hoy se denominan RATO: despegue asistido por cohete). La cláusula más importante en ese contrato era que estos motores no usarían cordita, que escaseaba. Un ingeniero llamado Isaac Lubbock estaba a cargo de este programa, y debido a la prohibición de la cordita (y en ese momento la tecnología de combustibles compuestos prácticamente no existía), eligió desarrollar un motor de combustible líquido basado en combustible de aviación y oxígeno. (Irving 1966, 61). El desarrollo progresó con éxito, y en mayo de 1943 un gran grupo de científicos de alto nivel fue invitado a presenciar el disparo de dicho motor. Crow estuvo presente en esa manifestación, pero cuando regresó a Londres no informó sobre el evento y su éxito a sus colegas del grupo Sandys. De hecho, debido a la estricta compartimentación, nadie en el grupo Sandys se enteró de este desarrollo hasta finales de septiembre de 1943, un mes después de la incursión de Peenemünde (Irving 1966, 62).
Crow encontró un aliado en Lindemann, y los dos persistieron para demostrar que un cohete tan grande, basado en cordita, simplemente no podía funcionar. (Técnicamente, estaban en lo correcto, como ya se explicó, pero rechazaron cualquier otra explicación de los hallazgos de Peenemünde). Un subcomité de combustibles para cohetes, en el que tanto Lindemann como Crow eran miembros (y en efecto lo controlaban), se preparó para el grupo Sandys un documento que decía que el alcance necesario para golpear Londres no podía alcanzarse con un cohete de una etapa (Irving 1966, 155).
Mientras se discutían las conclusiones de este subcomité, Sandys fue invitada (a mediados de octubre de 1943) a observar una prueba de los motores de combustible líquido de Lubbock y quedó muy impresionada.
El 25 de octubre, Churchill convocó otra reunión para decidir de una vez por todas si el trabajo de Peenemünde (parte del cual se dispersó a otros sitios después de la redada de agosto) constituía una amenaza real. Lubbock también estuvo presente y presentó su trabajo, y agregó que el estadounidense Robert Goddard, que trabajó en los Estados Unidos en los años veinte y treinta, lanzó con éxito varios cohetes de combustible líquido.
En el momento en que aparecieron los cohetes alimentados con líquido, todas las objeciones a la idea de armas de largo alcance colapsaron. La explicación a esto es simple. A diferencia de los cohetes de combustible sólido, donde todo el cuerpo sirve como cámara de combustión y, por lo tanto, debe ser capaz de soportar la presión de trabajo completa, en un cohete de combustible líquido, solo la cámara de combustión (relativamente) pequeña tiene que soportar esta presión. y el resto del misil, incluida la ojiva y los tanques de combustible, solo tiene que ser capaz de transportar su propio peso más cargas de lanzamiento y vuelo, y estos son considerablemente menos exigentes. Además, los combustibles líquidos contienen más energía por peso que los combustibles sólidos. Al volver a calcular el peso del cohete, surgió una cifra de unas doce toneladas, y esto estaba dentro de las capacidades del motor del cohete.
Esta pregunta quedó así resuelta, y la discusión pasó a líneas más pragmáticas, sobre los preparativos para el bombardeo V-1 y V-2 de Gran Bretaña. En ese momento, ni los británicos ni los estadounidenses podían determinar si estos cohetes fueron guiados de alguna manera o no, y si eran qué tipo de orientación se utilizó.
Los británicos bombardearon los sitios de lanzamiento del V-1 y retrasaron su empleo. Los primeros se lanzaron solo el 12 de junio de 1944, una semana después del desembarco de Normandía. Mientras tanto, los británicos continuaron rastreando las pruebas de V-2 en un número creciente de sitios. Un cohete se desvió de su trayectoria y cayó en Suecia. La inteligencia británica, que tenía una relación de trabajo con la inteligencia sueca, examinó el accidente y descubrió que contenía muchos componentes electrónicos. Debido a que los alemanes estaban preocupados por más bombardeos, trasladaron algunas de las pruebas a Polonia, y un cohete aterrizó en un bosque. El subsuelo polaco, que lo encontró primero, lo hundió en un pantano cercano. Cuando los alemanes abandonaron la búsqueda, los polacos la sacaron, quitaron algunas partes que consideraban importantes, y uno de los hombres las llevó en su bicicleta doscientas millas a una cita con un C-47 británico que aterrizó en un claro del bosque ( RV Jones 1978, 443–44). En esta etapa, incluso Lindemann estaba convencido y ya no se opuso.
El primer lanzamiento de un V-2 contra Londres tuvo lugar el 8 de septiembre de 1944, tres meses después del Día D. En total, se lanzaron 1.190 cohetes contra Londres hasta que todos los sitios de lanzamiento dentro del alcance fueron invadidos a mediados de abril de 1945. Amberes recibió unos 1.600 impactos. Pero ya era demasiado tarde para detener a los Aliados.
Algunas lecciones
De la descripción anterior de los eventos, es evidente que la pregunta crítica, si bombardear a Peenemünde o no, no dependía de la información de inteligencia (aunque estaba disponible) sino de las personalidades de las personas involucradas: Lindemann, Jones, Crow y algunos otros Para que Churchill actuara correctamente, tenía que escuchar a Lindemann, su asesor científico. Después de todo, fue Churchill quien le dio el trabajo. En la reunión a fines de octubre de 1943, Lindemann reiteró su posición y agregó: "Al final de la guerra, cuando conocemos la historia completa, deberíamos encontrar que el cohete era el nido de una yegua" (Irving 1966, 162). Pero si la posición de Lindemann hubiera sido aceptada, habría causado un daño considerable a los Aliados, haciendo más difícil la invasión.
Jones, en efecto jefe de inteligencia científica de la RAF, se enfrentó a Lindemann en 1940 cuando sospechó (basándose en fragmentos de información) que los alemanes planeaban usar rayos de radar para la navegación de bombarderos por la noche, el asunto de Knickebein. Entonces, también, Lindemann rechazó las afirmaciones de Jones como una locura. Afortunadamente, Churchill se puso del lado de Jones y ordenó una prueba más exhaustiva, lo que demostró que Jones tenía razón. Churchill recordó ese incidente y disfrutó recordándolo a Lindemann, y es bastante razonable pensar que esta fue la razón de su decisión de bombardear a Peenemünde a pesar de las pérdidas esperadas. En esa redada, la RAF perdió cuarenta y un aviones (casi trescientos aviadores) de los seiscientos aviones que participaron.
Crow fue revelado como una persona cuya actitud era problemática. Prefirió ocultar información crítica de sus colegas porque podría haber debilitado sus argumentos. Aunque fue un científico distinguido que contribuyó mucho al esfuerzo de guerra británico, se negó a aceptar que los cohetes de combustible líquido de una sola etapa pudieran ser un arma práctica, incluso una vez que se enteró de ellos, y por lo tanto obstaculizó el trabajo del grupo Sandys (Irving 1966, 156n).
El problema de compartimentación surgió aquí en toda su gravedad. Impidió que el grupo Sandys recibiera información oportuna sobre el éxito de los experimentos con combustible líquido, lo cual fue muy relevante para su tarea. Todos los principiantes en el negocio de la inteligencia saben que la imagen de la inteligencia, ya sea operativa o tecnológica, consiste en una miríada de detalles, algunos de los cuales no parecen ser relevantes (como en el caso anterior de las asignaciones de gasolina), y nunca se puede saber qué bit Haz que el rompecabezas sea solucionable. Finalmente, algunos de los dilemas lógicos y conclusiones que surgieron del asunto V-2, y que son aplicables a muchos otros temas, son presentados y discutidos por Jones, quien estuvo profundamente involucrado en este tema (RV Jones 1978, 455–58)
Muchos argentinos siguieron con atención las noticias que llegaban desde la cumbre de ministros de Finanzas del G20, en Riad (Arabia Saudita) por lo que pudiera corresponder a la deuda pública argentina. El ministro de Economía, Martín Guzmán, se encontraba presente, con diversas reuniones que incluyeron tanto a la directora ejecutiva del Fondo Monetario Internacional, Kristalina Georgieva, como al secretario del Tesoro estadounidense, Steven Mnuchin. Sin embargo, en Riad ocurrieron acontecimientos más importantes. Aquí 2 de ellos:
Durante el encuentro del G20 en Riad (Arabia Saudita), fuerzas irregulares de Yemen atacaron las instalaciones de la estatal petrolera saudí Aramco, en Yanbu, ciudad portuaria a orillas del mar Rojo, donde se encuentran instalaciones importantes de la compañía que está en un oferta pública de acciones.
La acción bélica, denominada “3ra. Operación de Disuasión”, alcanzó también otros blancos sensibles cerca de la ciudad de Yanbu, informó el portavoz de las Fuerzas Armadas de Yemen, el teniente general Yahya Sari.
Los hutíes de Yemen dijeron que utilizaron 12 drones y 3 cohetes.
Los aviones no tripulados y los cohetes "atacaron a Aramco y otros objetivos sensibles en Yanbu y los golpearon con alta precisión", dijo el portavoz, en un comunicado difundido por la televisión al-Masirah.
El Ejército yemení utilizó aviones no tripulados, según ellos de fabricación propia, y misiles Zolfaqar.
Nunca antes en el pasado los yemeníes habían utilizado esta herramienta que las tropas iraníes difundieron en sus ataques contra ISIS en Siria.
En verdad, el Zolfaghar es un misil balístico de combustible sólido de corto alcance (700 km.), desarrollado y producido por Irán, derivado del Fateh-313.
Hay una nueva versión, de mayor alcance del Zolfaghar, denominado "Dezful": hasta 1.000 km pero con la misma ojiva de 450 kg.
Cuando Irán lanzó 6 misiles Zolfaghar hacia la región Deir ez-Zor, en Siria, el 19/06/2017, afirmó que "no solamente Estado Islámico sino también los sauditas y los estadounidenses son receptores de este mensaje".
El 14/09/2019, el Ejército yemení, respaldado por el movimiento popular Ansarolá, atacó con 10 drones 2 instalaciones petrolíferas de Aramco y provocó la suspensión del 50% de la producción del mayor proveedor de petróleo del mundo.
El movimiento popular yemení Ansarolá ha presentado 4 sistemas de defensa antiaérea, de supuesta fabricación doméstica, lo que ha obligado a especular que tiene capacidad para continuar bombardeando el petróleo saudí.
El problema ahora es múltiple:
ocurrió con los ministros del G20 en Arabia Saudí, lo que habló pésimo de la defensa antiaérea del Reino,
ocurrió casi 5 meses después del anterior ataque lo que supone que el Reino no ha trabajado en forma eficiente en neutralizar la amenaza yemení, y
Arabia Saudí no consigue o ganar o pactar un final de un conflicto que lo está dejando muy expuesto después de 5 años de combates.
Un par de Mustang norteamericanos de la 1ª Fuerza de Exploración, 8ª Fuerza Aérea, con el P-51D Chip volado por Merrill Dewey DuMont en primer plano, detecta un sitio de lanzamiento de cohete V-2 alemán cerca del Canal de la Mancha en la primavera de 1945.
Las unidades V-2 eran móviles y podían desplegarse rápidamente en campo abierto o en suburbios de la ciudad, todas ellas estaban fuertemente defendidas y, por lo tanto, eran peligrosas de atacar.
Los exploradores enviarían por radio información sobre la ubicación, las condiciones climáticas y las defensas, etc. para ayudar a los bombarderos aliados a atacar estos sitios.
Otras instancias de cohetes V-2 lanzados por aviones aliados incluyen lo siguiente:
el 29 de octubre de 1944, los tenientes Donald A. Schultz y Charles M. Crane en un Rayo P-38 intentaron fotografiar un V-2 lanzado sobre los árboles cerca del río Rin,
el 1 de enero de 1945, un 4º piloto del Grupo de Combate que volaba sobre la ruta de vuelo del norte para atacar a los elementos de las cinco alas de combate alemanas en el Bodenplatte de Unternehmen ese día, observó que un V-2 "actuaba para disparar cerca de Lochem ... el cohete se inclinó inmediatamente desde 85 grados a 30 grados ”,
el 14 de febrero de 1945, un piloto del escuadrón 602 de la Royal Air Force Spitfire XVI, el compañero de Cupmond ’de Raymond Baxter, disparó contra un V-2 justo después del lanzamiento.
1) El V1 significa Vergeltungswaffe-1, alemán para las armas de represalia y fueron desarrollados para golpear detrás en Gran Bretaña en represalia para el bombardeo de ciudades alemanas.
2) Eventualmente, se desarrollaron tres armas V, el V2 fue el primer misil balístico, el V3 fue un súper arma que nunca se terminó.
3) El primer V-1 fue lanzado en Londres el 13 de junio de 1944, una semana después de la invasión de Francia. Su primer vuelo, lanzado desde un bombardero, tuvo lugar el 10 de diciembre de 1942.
4) Fue accionado por un motor simple del pulso del pulso que pulsó 50 veces por segundo que le dio un sonido zumbando característico que lo hacía ser nombrado "bomba zumbadora" o "doodlebug" por los británicos.
5) Así es como sonaba una V1:
6) El V1 fue guiado por un piloto automático simple que regulaba la velocidad y la altitud, se usaba un sistema de péndulo ponderado para controlar el paso.
7) Para determinar el tiempo de vuelo un odómetro, que fue impulsado por una paleta en la nariz, calculado cuando se alcanzó el área objetivo aproximada. Antes del lanzamiento de la V1, el contador se fijó en un valor que llegaría a cero cuando llegara al área objetivo en las condiciones de viento predominantes.
8) El V1 fue lanzado desde una rampa que estaba apuntando en la dirección aproximada cuando salía de la rampa que volaría a unos 150 mp / h.
9) En las versiones anteriores, cuando el V1 entró en una inmersión hacia el objetivo del motor se cortó debido a la inanición de combustible, este problema se corrigió en una versión posterior, cuando el motor mantuvo la alimentación de la V1 todo el camino.
10) Para defender Londres contra los V1s, los cañones antiaéreos fueron replegados en números masivos en las rutas de aproximación de los cohetes.
11) En la primera noche de bombardeo sostenido, los equipos antiaéreos alrededor de Croydon estaban jubilosos - de repente estaban derribando un número sin precedentes de bombarderos alemanes; la mayoría de sus objetivos se incendiaron y cayeron cuando sus motores se cortaron. Hubo una gran decepción cuando se anunció la verdad.
12) Resultó muy difícil derribar estos pequeños y rápidos aviones no tripulados. Además de eso, estaban diseñados para volar justo por encima de la gama efectiva de cañones antiaéreos ligeros, y justo por debajo de la altura óptima de los cañones antiaéreos más pesados.
13) Las espoletas de proximidad y el radar de colocación de armas se utilizaron contra los V1 con un éxito cada vez mayor.
14) En su primera semana, el 17% de todas las bombas voladoras que entraron en el "cinturón de armas" costero fueron destruidas por cañones antiaéreos. Esto aumentó al 60 por ciento el 23 de agosto y el 74 por ciento en la última semana de agosto, cuando en un día el 82 por ciento de todos los V1 entrantes fueron derribados. La tasa mejoró de un V-1 destruido por cada 2.500 proyectiles disparados, a uno por cada 100.
15) Los cazas Hawker Tempest fueron empleados para contrarrestar esta amenaza ya que eran lo suficientemente rápidos y capaces de volar lo suficientemente bajo (controlados) para mantenerse al día con los V1, que volaban a más de 340 mph.
Un alemán Luftwaffe Heinkel He 111 H-22. Esta versión podría llevar FZG 76 (V1) bombas volantes, pero sólo unos pocos aviones fueron producidos en 1944. Algunos fueron utilizados por el ala de la bomba KG 3.
16) Una de las tácticas utilizadas por los pilotos de combate fue usar el flujo de aire sobre el ala de un caza para levantar un ala del V-1. Para lograr esto, tuvieron que deslizar la punta del ala del avión de combate a 6 pulgadas de la superficie inferior del ala del V-1. Si se ejecuta correctamente, esta maniobra podría inclinar el ala del V-1 hacia arriba, lo que anularía los giroscopios y que enviaría el V-1 a una inmersión fuera de control. Al menos 16 V1 fueron destruidos de esta manera.
17) Para ajustar y corregir los ajustes en el sistema de guía V-1, los alemanes necesitaban saber dónde caían los V-1. Así, los servicios de inteligencia alemanes fueron solicitados para obtener estos datos de sus agentes en Gran Bretaña. Sin embargo, todos los agentes alemanes en Gran Bretaña habían sido capturados y convertidos y estaban actuando como agentes dobles bajo control británico dando informes inexactos a los alemanes.
18) Un cierto número de los V-1 disparados había sido equipado con transmisores de radio, que había demostrado claramente una tendencia para el V-1 a falta del objetivo previsto. El comandante de la campaña V1 comparó los datos recogidos por los transmisores con los informes obtenidos a través de los agentes dobles. Llegó a la conclusión de que la discrepancia entre los dos conjuntos de datos debía ser causada por un fallo de los transmisores de radio, ya que se había asegurado que los agentes eran completamente confiables.
19) En septiembre de 1944, los sitios de lanzamiento en la costa francesa fueron invadidos por el avance de los ejércitos aliados y la amenaza V-1 a Inglaterra se detuvo temporalmente. Un total de 4.261 V-1 habían sido destruidos por los cazas, el fuego antiaéreo y los globos de bombardeo.
20) El 29 de marzo de 1945, un V-1 golpeó Datchworth en Hertfordshire, que fue la última acción enemiga de cualquier tipo en suelo británico.