Mostrando entradas con la etiqueta Unión Soviética. Mostrar todas las entradas
Mostrando entradas con la etiqueta Unión Soviética. Mostrar todas las entradas

domingo, 6 de julio de 2025

Helicóptero ligero: Kamov Ka-26

Helicóptero ligero Kamov Ka-26




El Kamov Ka-26 (designación OTAN: Hoodlum1​) es un helicóptero soviético ligero de rotores coaxiales con dos motores radiales.


Diseño y desarrollo

El Ka-26 entró en producción en 1966. Se han construido 850. El Ka-126 fue una variante con un solo motor. Todas las variantes Ka-26/126/128/226 tienen el código "Hoodlum". La versión derivada con dos motores turboeje es el Ka-226.



El fuselaje del Ka-26 consta de una burbuja que contiene la cabina del piloto y copiloto, además de una caja desmontable, disponible en variantes de evacuación médica, transporte de pasajeros y versiones agrícolas. El helicóptero puede volar con o sin la caja adjunta, dándole una gran flexibilidad en su uso. El Ka-26 es lo suficientemente pequeño y muy manejable lo que le permite aterrizar en un camión de gran tamaño.



La principal debilidad de la Ka-26 es su planta motriz. Está alimentado por dos motores radiales Vedeneyev M-14V-26 de 325 CV (242 kW) montados en góndolas fuera de borda. Los motores a pistón, aunque son más sensible que los turboeje modernos, son de mantenimiento relativamente intensivo. El Ka-26 tiene poca potencia con sus dos motores radiales, especialmente cuando se utiliza en tareas de fumigación, donde el exceso de carga es común. Ningún otro helicóptero existe en el mundo que funcione a una potencia constante del motor del 95% para la mayor parte de su régimen de vuelo. Esto deja al piloto poca potencia de reserva en caso de emergencia. Debido a la sobrecarga frecuente, el eje de interconexión que une los dos motores es propenso a la rotura y requiere inspecciones frecuentes.



La instrumentación estándar del Ka-26 se asemeja a la de las grandes aeronaves Kamov y se considera excesivo para el uso civil y fumigación. El gran panel de la cabina con 18 instrumentos principales dificulta la visibilidad inferior derecha, que es crucial para evitar las líneas eléctricas y telefónicas en tareas de agricultura y otras operaciones de baja altitud. Es una práctica común reemplazar el panel de instrumentos con un diseño simplificado, manteniendo sólo los seis instrumentos básicos, útil para una mejor visión.



La baja altura del rotor inferior requiere que los pasajeros y la tripulación se acerquen desde la parte trasera cuando los rotores están girando, ya que, en la parte delantera de la aeronave, es suficientemente baja como para alcanzar la cabeza de una persona.

Historia operacional

El Ka-26 fue utilizado por algunos ejércitos WARPAC en el papel de desembarco o aerotransportadas, pero su vulnerabilidad por su baja velocidad (150 km/h) limita el uso militar. Es, sin embargo, sumamente útil para fumigación. La configuración coaxial del rotor principal, lo que le hace más pequeño y ágil, también se traduce en un patrón de flujo de aire delicado en el helicóptero, proporcionando una completa pero suave distribución de productos químicos en las plantas. El Ka-26 es a menudo utilizado para rociar las explotaciones de uva en Hungría, donde helicópteros de diseño convencionales "de rotor principal y rotor de cola" pueden ocasionar daños con su flujo de aire. Los operadores húngaros del Kamov afirman que los rotores coaxiales de los Ka-26 crean una corriente de aire que permite a los pesticidas llegar debajo, en lugar de en la parte superior de las hojas, esto significa una distribución mucho más eficaz de los plaguicidas, pues la mayoría de las plagas y los parásitos no viven en la parte superior del follaje. Además, el sistema de vórtices coaxial es simétrico, lo que permite a la distribución de los plaguicidas ser más uniforme. Véase vórtices simétricos

Variantes

  • Ka-26-A Hoodlum: Helicóptero utilitario ligero de uno o dos tripulantes, propulsado por dos motores VMK (Vedeneyer) M-14V-26 de 325 caballos de fuerza (243 kW) con motor de pistón radial; 850 construidos.
  • Ka-26SS: Banco de pruebas de la tecnología NOTAR para el Ka-118.
  • Ka-126 Hoodlum-B: Helicóptero utilitario ligero de uno o dos tripulantes, impulsado por un motor de turbo-eje OMKB "Mars" (Glushenkov) TVD-100 con 720-shp (537 kW). Voló por primera vez en 1986 y construido bajo licencia por IAR en Rumania. Dos prototipos y 15 helicópteros de serie construidos.
  • V-60: Prototipo ligero de escolta armada basado en el Ka 126.
  • Ka-128: Un prototipo, impulsado por un motor de turboeje Turbomeca Arriel 1D1 de 722-shp (538 kW).
  • Kamov Ka-226: Helicóptero de servicio de seis o siete asientos, impulsado por dos motores turboeje Rolls-Royce (Allison) 250-C20R de 450 shp (335 kW).


Operadores

Operadores militares


 Lituania

    (policía)

operadores Civiles

Rusia

    Gazpromavia


Especificaciones


Características generales


    Tripulación: 2
    Capacidad: 6 pasajeros
    Carga:
        900 kg (tolva química)
        1100 kg (grúa volante)
    Longitud: 7,8 m (25,4 ft)
    Diámetro rotor principal: 13 m (42,7 ft)
    Altura: 4,1 m (13,3 ft)
    Área circular: 265,5 m² (2857,9 ft²)
    Peso vacío: 1950 kg (4297,8 lb)
    Peso máximo al despegue: 3250 kg (7163 lb)
    Planta motriz: 2× Motor radial Vedeneyev M-14 V-26.
        Potencia: 239 kW (330 HP; 325 CV) cada uno.

Rendimiento

    Velocidad máxima operativa (Vno): 170 km/h (106 MPH; 92 kt)
    Alcance: 400 km (216 nmi; 249 mi) o más de 3,5 horas en vuelo.
    Techo de vuelo: 3000 m (9843 ft)




viernes, 13 de junio de 2025

Avión experimental: Los numerosos modelos rusoviéticos (4/4)

 /k/ Aviones Episodio 93: Slavshit experimental




/K/ Planes




Mikoyan Gurevich MiG-21I Analog

Como parte del desarrollo del avión de transporte supersónico Tupolev Tu-144, se desarrolló una nueva planta de ala ojival. Dado que esta planta no tenía precedentes en la aviación soviética, se decidió convertir un MiG-21 para que sirviera como banco de pruebas. El MiG-21I, como se le conocía, sustituyó todas las superficies horizontales por una única ala ojival de gran tamaño, a escala reducida del diseño del Tu-144, que abarcaba toda la longitud del fuselaje. En el morro y la cola se instalaron compensadores de masa remotos, lo que permitía desplazar el centro de gravedad para las pruebas. A partir de abril de 1968, se realizaron 140 vuelos de prueba, probando el MiG-21I desde el borde de la pérdida hasta Mach 2,06. Al finalizar las pruebas, un prototipo se perdió durante una demostración acrobática, mientras que el otro se utilizó para entrenar a los primeros pilotos del Tu-144 antes de ser entregado al Museo de la Fuerza Aérea de Monino. El programa de pruebas fue en general un éxito: la forma del ala fue validada, lo que permitió que el Tu-144 entrara en servicio.


Sukhoi 100LDU

Durante la fase de diseño del proyecto del bombardero supersónico T-4, Sukhoi determinó que sería necesario un sistema de control electrónico (fly-by-wire) para la aeronave. Ante la escasa experiencia práctica con estos sistemas, Sukhoi decidió crear un banco de pruebas FBW. Se seleccionó un entrenador Su-7U como avión de prueba, que se modificó con canards para crear un banco de pruebas longitudinalmente inestable para el sistema FBW. Designado como 100LDU, el avión despegó en 1968. Las pruebas resultaron satisfactorias: validaron el sistema de control desarrollado para el T-4 y se mantendría como banco de pruebas de control durante la siguiente década, desempeñando las mismas funciones en 1973-73, mientras Sukhoi desarrollaba el Su-27.


Alekseev SM-6

Aunque el KM marcaría la cúspide del desarrollo del ekranoplano, no sería el último diseño de este tipo en volar. La Armada Soviética se había dado cuenta de la idea del vehículo de efecto suelo y, a finales de los años 60, buscaba un ekranoplano que sirviera como transporte de alta velocidad. En 1972, Alekseev volaría el SM-6, que se concibió como prototipo a escala reducida para el futuro A-90, que cumpliría esta función. El SM-6 era radicalmente diferente de los diseños anteriores: si bien compartía la misma cola en T y el ala de baja relación de aspecto, carecía de las prominentes superficies de soplado de las alas. En su lugar, dos motores TRD-25 en el morro expulsarían los gases de escape bajo la base de las alas, mientras que un único turbohélice AI-20 montado en la punta de la cola proporcionaría empuje adicional. A diferencia de los ekranoplanos anteriores, el SM-6 demostró ser capaz de volar sin efecto suelo, con un modesto techo de vuelo de 3000 m. Al final, el SM-6 fue un éxito: el A-90 volaría ese año y se produjeron cinco prototipos.


Bartini-Beriev VVA-14

A principios de los años 60, Bartini propuso un enorme vehículo de efecto suelo de 2500 toneladas. Si bien el proyecto obtuvo cierto apoyo, se decidió primero desarrollar un demostrador tecnológico. Bajo la designación VVA-14, Bartini se asoció con Beriev para crear una aeronave de doble función que pudiera servir como plataforma ASW/patrulla, a la vez que validaba el diseño más grande. El VVA-14 era una aeronave inusual: estaba equipado con tren de aterrizaje convencional y pontones (primero fijos, luego inflables) para operaciones anfibias, una gran sección central del ala para vuelo de efecto suelo y secciones exteriores del ala más delgadas que permitían el vuelo convencional. Aunque los dos prototipos solo estaban equipados con dos turbofán D-30 sobre el fuselaje, los planes finales preveían doce reactores de sustentación RD-36 para permitir que el VVA-14 lograra vuelo VTOL. Las pruebas de vuelo comenzaron en septiembre de 1972, y en general se desarrollaron satisfactoriamente a pesar de algunos problemas de vibración. Los pontones inflables se instalaron en 1974, al igual que los motores delante del ala para generar un efecto de soplado. Desafortunadamente, el programa VVA-14 se vio gravemente afectado por el fallecimiento de Bartini a finales de 1974. Los proyectos de Bartini quedaron en el olvido, ya que los proyectos de Beriev, como el A-40 y el A-50, cobraron prioridad, y para finales de 1975, el VVA-14 fue abandonado.


Mikoyan Gurevich MiG-105 Spiral

En 1965, la URSS inició un ambicioso proyecto de avión espacial bajo el nombre de Spiral. Vagamente similar a los proyectos estadounidenses de aviones espaciales con cuerpo sustentador, el Spiral iba a utilizar un pequeño... Aunque el orbitador en sí era vagamente similar a los proyectos estadounidenses con cuerpo sustentador, el alcance total del programa era mucho más radical. El Spiral iba a involucrar un avión de transporte que llevaría todo el conjunto a Mach 6 a una altitud de unos 30 km, arrojando el orbitador, que sería propulsado a órbita mediante un gran cohete propulsor. Los planes exigían que el diseño final tuviera una carga útil de unas 10 toneladas métricas en una órbita de 150 km. Una vez en órbita, serviría como plataforma tripulada de reconocimiento, ataque o intercepción, con suficiente combustible a bordo para cambiar la inclinación en 17 grados.

Dada la ambición del programa Spiral, se realizaron extensas pruebas a escala reducida mucho antes de que un prototipo real emprendiera el vuelo. La fase de experimentación incluyó dos clases de vehículos de prueba: prototipos no tripulados de alta velocidad para evaluar las características de reentrada y vehículos tripulados de baja velocidad para examinar las características de aterrizaje. Los modelos de prueba no tripulados, denominados BOR-1, -2 y -3, realizaron varios lanzamientos verticales desde cohetes a la atmósfera superior a partir de 1969. El BOR-1 era un modelo a escala 1:3 que realizó un único vuelo que aceleró la máquina a velocidades suborbitales de 100 km. Descendería a unos 60 km, momento en el que se quemaría durante la reentrada (previsto como parte del programa). El BOR-2 que le siguió fue más robusto, lo que le permitió realizar cuatro lanzamientos de prueba entre 1969 y 1972. El BOR-3, siguiendo los mismos planes generales, fallaría en sus dos pruebas, una perdida durante un accidente de lanzamiento y la otra perdida cuando su paracaídas no se desplegó en su vuelo inaugural en 1974.

El banco de pruebas tripulado Spiral, denominado EPOS, no despegó hasta mucho después de que el diseño fuera validado por los vehículos de prueba BOR. Aunque concebido como un banco de pruebas de baja velocidad, el EPOS incorporaría muchos elementos del diseño final previsto, incluyendo las secciones de ala exterior plegables y una cápsula de escape presurizada. Si bien carecía de los cohetes propulsores previstos para maniobras orbitales, estaba equipado con un único turborreactor RD-36 con 10 minutos de combustible, lo que le permitiría realizar múltiples intentos de aterrizaje o desviarse a otro aeródromo. Desafortunadamente, el fallecimiento de Artyom Mikoyan en 1970 suspendió el proyecto, y cuando se reanudó en 1972, el ambicioso programa Spiral se orientó hacia la investigación. El EPOS finalmente estaría listo para las pruebas a mediados de la década de 1970, pero las pruebas en tierra retrasarían el primer vuelo de la aeronave.

Recién en mayo de 1976, el EPOS voló por primera vez, despegando y volando por sus propios medios durante un breve vuelo. La siguiente etapa de pruebas comenzó en 1977, con el lanzamiento del EPOS desde un Tu-95K. Tras varias pruebas de transporte cautivo, el EPOS realizó su primera prueba de caída en octubre de 1977, planeando desde una altitud de 5 km hasta un aeródromo. Se realizarían nueve vuelos de prueba más, pero durante ese tiempo, el nuevo Ministro de Defensa de la URSS había cambiado el curso del desarrollo de las naves espaciales soviéticas. Aunque un banco de pruebas supersónico del EPOS estaba listo para volar y una variante hipersónica estaba en construcción, se dio prioridad al programa Buran. El golpe mortal para el EPOS llegó en 1978, cuando el prototipo resultó dañado en un accidente de aterrizaje. Aunque fue reparado y volvió a estar en condiciones de vuelo, marcó el final del programa: el EPOS nunca volvería a volar.


Sukhoi Su-27UB-PS


A principios de los 80, Sukhoi comenzó a investigar el uso de toberas de motor con vectorización de empuje. Tras experimentos iniciales con toberas planas bidimensionales, Sukhoi desarrolló un demostrador a escala real a finales de la década. En 1989, un Su-27UB de preproducción fue equipado con una nueva tobera sobre el motor de babor para evaluar el nuevo sistema de vectorización de empuje. La tobera consistía en placas planas, que solo podían moverse verticalmente. Las pruebas de vuelo comenzaron en 1989. Se realizaron 20 vuelos de prueba, aparentemente con buenos resultados. Sin embargo, el desarrollo de la vectorización de empuje de Sukhoi pronto cambiaría. Sukhoi pasó a experimentos de vectorización de empuje tridimensionales.


Sukhoi Su-37

Aunque el sistema de vectorización de empuje 2D con el que Sukhoi experimentó a principios de la década resultó infructuoso, no fue el último de sus experimentos con este sistema. Mientras se iniciaba el trabajo en el T10M/Su-35, Sukhoi tenía planes para un demostrador mucho más avanzado. En 1995, el undécimo prototipo del T10M fue ampliamente reconstruido como el Su-37. El Su-37 mejoró prácticamente todo del Su-35. La estructura se reconstruyó con más materiales compuestos y aleaciones de aluminio y litio, y la aviónica y la cabina se mejoraron con respecto al ya impresionante conjunto del Su-35. Se instaló el motor AL-31FP con vectorización de empuje 2D, y se planeaba el montaje del AL-37FU con toberas de vectorización 3D una vez finalizado el desarrollo del motor. Las toberas del AL-31FP podían girar 15 grados hacia arriba o hacia abajo, lo que proporcionaba al avión autoridad para cabecear y alabear en ángulos de ataque extremos. Sin embargo, a simple vista, el Su-37 era prácticamente indistinguible del Su-35. Salvo por los estabilizadores verticales cuadrados, el avión era prácticamente idéntico al prototipo del Su-35.

El Su-37 realizó su primer vuelo en la primavera de 1996, completando las pruebas preliminares a tiempo para su debut en el Salón Aeronáutico de Farnborough en septiembre de ese año. Sukhoi se aseguró de demostrar la agilidad del avión, alcanzando el Su-37 un ángulo de ataque de 180 grados en una maniobra "Super Cobra", así como varias otras maniobras posteriores a la pérdida. Las apariciones en salones aéreos de todo el mundo continuaron hasta 2001, cuando el Su-37 finalmente fue equipado con los motores AL-37FU con vectorización de empuje 3D, junto con aviónica y controles actualizados. Desafortunadamente, la trayectoria del Su-37 en esta configuración fue breve: el único ejemplar se estrelló en diciembre de 2002. La tensión causada por las intensas maniobras en los salones aéreos dañó el estabilizador horizontal derecho, provocando su fallo en vuelo. El accidente del Su-37 marcó el final del programa. El Su-37 nunca llegaría a producción, y no está claro si Sukhoi siquiera lo pretendió. En cualquier caso, el Su-37 no era para nada inútil: elementos probados en el diseño se trasladaron a varios proyectos Flanker, incluyendo el Su-30 y el Su-35 de segunda generación.


Sukhoi Su-47

Cuando la URSS inició sus programas de cazas de nueva generación a finales de los años 70, Sukhoi decidió adoptar un enfoque radicalmente diferente al empleado en sus diseños anteriores. En estrecha colaboración con TsAGI, comenzaron a desarrollar un caza de ala en flecha hacia adelante. Como demostraban los estudios en túneles de viento de TsAGI, dicha ala proporcionaría excelentes características de vuelo en la envolvente transónica. Sukhoi, basándose en los estudios de TsAGI y en sus propios experimentos con supermaniobrabilidad, creó una propuesta para un caza ligero y pesado. Ambos diseños eran máquinas de tres superficies dinámicamente inestables con vectorización de empuje para mejorar el rendimiento tras la pérdida. Parece que el trabajo avanzó más en un diseño conocido como el S-32, un avión de mayor tamaño destinado a ser el sucesor del Su-33. El S-32 iba a ser un gran salto respecto de la serie Flanker: alas en flecha hacia adelante y controles avanzados darían una agilidad excelente, mientras que una forma sigilosa moderada reduciría el RCS y, lo más notable, una gran boquilla única de vectorización de empuje derivada del diseño utilizado en el Su-27UB-PS vectorizaría el empuje de ambos motores.

Desafortunadamente para Sukhoi, el proyecto se prolongó hasta que la crisis económica de 1989 obligó a cancelarlo. Los problemas estructurales asociados con las alas en flecha hacia adelante obligaron a Sukhoi a dedicar gran parte de la década al desarrollo de una estructura de ala de material compuesto para el avión, por lo que Sukhoi apenas comenzaba la construcción de prototipos al finalizar la Guerra Fría. Afortunadamente para Sukhoi, el éxito de exportación del Flanker les proporcionó abundantes ingresos adicionales durante los años 90, lo que les permitió continuar con el desarrollo de su caza cancelado. En 1991, comenzaron a realizar pruebas de caída desde helicópteros con modelos a escala de una tonelada, lo que les permitió validar el diseño. El S-32 se transformaría ligeramente, perdiendo sus características navales y su tobera cuadrada para convertirse en el S-37. Inicialmente, el S-37 estaba equipado con dos turbofán D30F-11 sin toberas de empuje vectorial, conservando el mismo diseño avanzado desarrollado para el S-32, pero utilizando el morro delantero y el tren de aterrizaje de un Su-27 para reducir costos.

El S-37 se completó a finales de 1996 y despegó en septiembre del año siguiente. Las pruebas ampliaron gradualmente los límites de vuelo, hasta alcanzar una velocidad máxima de Mach 1,4. Mientras tanto, los ingenieros de Sukhoi trabajaban no solo para autorizar el caza a velocidades más altas, sino también para adaptar el diseño como demostrador tecnológico para un caza de nueva generación, ya que la financiación y el apoyo para el MiG 1.44, que había ganado el contrato de MFI, se estaban agotando. Los planes preveían la sustitución de los motores D30F por motores AL-41 con vectorización de empuje, mientras que el avión se equipaba con diversos paquetes de aviónica modular para demostrar sus capacidades. En 1999, hizo su debut público en el salón aeronáutico MAKS como Su-47. Finalmente, el Su-47 seguiría siendo un demostrador tecnológico. El programa de pruebas finalizó en torno al nuevo milenio sin que se instalaran los AL-41, y, al comenzar el programa PAK FA, el Su-47 fue retirado. 

viernes, 6 de junio de 2025

Avión experimental: Los numerosos modelos rusoviéticos (3/4)

 /k/ Aviones Episodio 93: Slavshit experimental




/K/ Planes







Lavochkin La-7R

A finales de 1944, la OKB Lavochkin recibió el encargo de adaptar el motor cohete RD-1 a su caza La-7 para que sirviera como medida provisional hasta que estuvieran disponibles los motores a reacción. Se convirtieron dos La-7, uno con el motor RD-1 y otro con el R-1KhZ, ambos con 300 kg de empuje. Los motores se montaron en la cola de los La-7, lo que requirió modificaciones en el timón para acomodarlo y un tanque de 90 litros para queroseno y 180 litros de ácido nítrico. Las pruebas de vuelo comenzaron a finales de 1944. Durante las pruebas, el motor del primer La-7 explotó en tierra en mayo de 1945. El avión superviviente sufriría una explosión en vuelo, pero aterrizó de forma segura, fue reparado y volvió al servicio a tiempo para realizar un sobrevuelo en el desfile de Tushino en agosto. 1946. Si bien el La-7R era capaz de alcanzar un breve impulso de 80 km/h, esto se produjo a costa de una menor maniobrabilidad y manejo, además de los peligros asociados con el motor cohete. Con la entrada en servicio de los turborreactores, el La-7R dejó de ser necesario, por lo que, tras el vuelo de Túshino, el programa llegó a su fin.


Los Motorjets

Al acercarse el fin de la Segunda Guerra Mundial, la URSS seguía luchando por desarrollar un motor a reacción viable, incluso mientras otras naciones comenzaban a desplegar cazas a reacción. Con la esperanza de ofrecer una solución provisional mientras se aplicaba ingeniería inversa a los motores alemanes capturados para su producción, se encargó el desarrollo de cazas a reacción. El concepto de motor a reacción era una solución bastante simple, aunque rudimentaria: utilizar un motor de pistón para impulsar los ventiladores del compresor de un avión a reacción. Equivalía, en la práctica, a un ventilador conducido con postcombustión, y seguía siendo más prometedor que las diversas propuestas de aviones propulsados ​​por cohetes, por lo que el trabajo prosiguió. Se encargó a Sukhoi y a Mikoyan Gurevich el desarrollo de sus diseños, lo que dio como resultado el Su-5 y el I-250. Finalmente, ninguna de las dos propuestas alcanzaría una producción significativa, ya que el desarrollo de los aviones a reacción finalmente se había acelerado con el inicio de las pruebas.


Mikoyan Gurevich I-250

El caza a reacción de MiG era el desgarbado I-250. Si bien su diseño era convencional, la estructura estaba dominada por los dos motores. La potencia principal provenía de un motor de pistón VK-107 de 1650 hp en el morro, con tomas de aire bajo el motor que alimentaban a un motor a reacción VRDK, que absorbía energía del motor para su funcionamiento. Debido al enorme tamaño del motor, el piloto se sentaba muy atrás en el fuselaje. A pesar del gran tamaño y la profundidad del fuselaje, la capacidad de combustible del motor a reacción era limitada: el I-250 solo podía usar el VRDK durante 10 minutos. Aunque nominalmente era un demostrador de tecnología, el I-250 estaba armado con tres cañones B-20. El primer prototipo volaría en marzo o abril de 1945 sin el VRDK instalado. Pruebas posteriores instalaron el motor a reacción, pero el motor resultó problemático.

Aunque un prototipo se perdió durante las pruebas, el I-250 se ordenó entrar en producción en julio de 1945 tras ser considerado superior al Su-5, su competidor. Se realizó un pedido de varios aviones de preproducción, pero problemas de producción retrasaron su entrega hasta mediados de 1946. A pesar de los retrasos, ese mismo febrero ya se había realizado un pedido de 50 aviones de producción bajo la designación provisional MiG-13. Las pruebas de los aviones de preproducción fueron desastrosas. Problemas con el motor impidieron su aparición prevista en Tushino en agosto de 1946, y las propias pruebas de aceptación se retrasaron debido a que las pruebas del motor VRDK se prolongaron más de lo previsto. Mientras tanto, la VVS y la PVO se habían decidido por el MiG-9 para su nuevo caza, dejando al I-250 sin operador. MiG intentó salvar el diseño presentándolo a la Aviación Naval Soviética como escolta para torpederos, lo que le permitió reanudar las pruebas en 1947. Sin embargo, este esfuerzo duró poco. En abril de 1948, el programa I-250 llegó a su fin cuando la Armada Soviética declaró que el I-250 había fallado las pruebas de aceptación.


Sukhoi Su-5

El caza a reacción de Sukhoi recibió la designación Su-5. Al igual que el I-250, el Su-5 estaba equipado con el motor M-107 de 1650 hp en el morro y un motor a reacción VRDK en la cola, lo que le daba un fuselaje amplio y profundo. El armamento consistía en un cañón de 23 mm y dos ametralladoras de 12,7 mm. Las pruebas de vuelo comenzaron en junio de 1945. Durante las pruebas, se determinó que el Su-5 era inferior al I-250. Si bien su diseño de cabina podría haber sido más favorable, el Su-5 tenía un alcance y una autonomía significativamente menores, ya que solo transportaba combustible suficiente para que el motor a reacción funcionara durante tres minutos (en comparación con los 10 minutos del I-250).


Florov Samolyot 4302/4303


Al final de la Segunda Guerra Mundial, la VVS encargó a Ilya Florov el desarrollo de un avión experimental para investigar el vuelo transónico a alta velocidad. Dado el propósito previsto, el Samolyot 4302 debía ser increíblemente compacto: el fuselaje apenas alcanzaba el tamaño del cohete piloto y el combustible. Como aún no disponía de información sobre alas en flecha, Florov optó por un diseño de alas laterales que, curiosamente, se parecía mucho al Heinkel He 162. Se desarrolló un perfil aerodinámico delgado de flujo laminar en colaboración con TsAGI para su uso en el diseño, y se proporcionó una cabina presurizada para el piloto. El primer 4302 se diseñó con tren de aterrizaje fijo, mientras que todos los aviones posteriores utilizarían un carro desechable y un patín retráctil, similar al Me 163. Las pruebas de vuelo comenzaron con planeadores sin motor en 1946, seguidas de pruebas con motor al año siguiente. Mientras tanto, el 4303, de mayor capacidad, esperaba su motor. Sin embargo, a mediados de 1947, el proyecto se canceló por completo debido al progreso de los motores a reacción. El motor previsto para el 4303 se transfirió a MiG, que aún trabajaba en su I-270 propulsado por cohetes.


DFS/Bereznyak 346

Durante la Segunda Guerra Mundial, Felix Kracht, del Instituto Alemán de Planeadores (DFS), comenzó a trabajar en un avión de investigación de alta velocidad. A diferencia de otros diseños del DFS, el 346 era una aeronave de líneas aerodinámicas con alas en flecha y un motor cohete diseñado para atravesar la barrera del sonido. El piloto debía colocarse en decúbito prono en el morro para reducir la resistencia, con la cabina presurizada y diseñada para desprenderse como cápsula de escape en caso de emergencia. Los planes preveían que el 346 fuera transportado en la parte trasera de un Do 217 hasta una altitud de despegue cómoda, momento en el que la aeronave se desprendería, encendería sus motores y ascendería hasta los 30.000 metros, alcanzando Mach 2,6. Operativamente, existían planes tentativos para utilizarlo en misiones de reconocimiento. Desafortunadamente para Kracht, el proyecto cayó en manos del Ejército Rojo al final de la guerra.

Afortunadamente, el fin de la guerra no significaría el fin del 346. El proyecto continuó bajo los soviéticos, reanudando el desarrollo en 1946. Las pruebas del túnel de viento de TsAGI revelaron varias deficiencias aerodinámicas, lo que resultó en la instalación de varias vallas alares y el alargamiento del fuselaje. El prototipo original se completó y se probó el planeo en 1946, pero no sería hasta mediados de 1951 que comenzarían los vuelos propulsados. Lanzado desde debajo del ala de un Tu-4, se descubrió que el 346 tenía problemas de estabilidad y control al acercarse a la velocidad del sonido, por lo que las pruebas se limitaron a Mach 0,9. Sin embargo, el 346 se perdería en un accidente en su tercer vuelo propulsado después de que la aeronave perdiera el control en un vuelo a alta velocidad. Aunque el piloto se eyectó con seguridad (gracias a la cápsula de escape), el accidente del prototipo puso fin al programa.


Mikoyan Gurevich I-270

Aunque los cohetes habían caído en desuso, MiG se esforzaría por producir un interceptor propulsado por cohetes al final de la Segunda Guerra Mundial. Debido al bajo rendimiento de los primeros reactores, un cohete podría, en teoría, ofrecer un rendimiento superior en altitud. Bajo la designación I-270, MiG diseñó un avión derivado en gran medida del Messerschmitt Me 263 en estrecha colaboración con TsaGI. Los problemas con los diseños de ala en flecha hicieron que MiG optara por un ala recta y delgada, mientras que los problemas previstos de estabilidad a alta velocidad llevaron a la adopción de una cola en T. El I-270 volaría por primera vez en pruebas de planeo a finales de 1946. Un segundo prototipo comenzó las pruebas propulsadas a principios del año siguiente, pero ambos prototipos pronto sufrirían daños irreparables en accidentes de aterrizaje. Para entonces, el desarrollo de los reactores progresaba con la suficiente fluidez como para que desapareciera la necesidad de un interceptor de cohetes de defensa puntual, por lo que el VVS canceló el I-270.


Cheranovsky BICh-26

Durante la Segunda Guerra Mundial, Cheranovsky dirigió su propia oficina de diseño con la intención de desarrollar un nuevo avión de alta velocidad. A través de los estudios de diseño designados como BICh-24 y -25, gradualmente se decidió por un diseño sin cola de barrido compuesto, mientras que la llegada de la propulsión a reacción hizo mucho más prácticas las velocidades máximas mucho mayores. Al final de la Segunda Guerra Mundial, Cheranovsky estaba trabajando en un novedoso diseño de caza designado como BICh-26. El BICh-26 tenía un aspecto increíblemente moderno, con una disposición sin cola de barrido compuesto. Estaba propulsado por un único turborreactor AM-5 alimentado por tomas de aire en las mejillas, dejando espacio en el morro para armamento o radar. Aún mejor, la forma del ala permitía el uso de un ala y un fuselaje gruesos y espaciosos sin comprometer el rendimiento a alta velocidad. Gracias a la extensa experimentación de Cheranovsky, se proyectó que el BICh-26 alcanzaría una velocidad máxima de Mach 1,7. Sin embargo, al final el BICh-26 nunca se hizo realidad: en 1948, la salud de Cheranovsky comenzó a empeorar y todos sus proyectos llegaron a su fin.


Bisnovat 5

Poco después de comenzar las obras del 346, Matus Bisnovat inició un proyecto independiente de alta velocidad, basado en su experiencia previa con el I-302. Con objetivos similares a los del 346, no sorprende que el diseño fuera muy similar: un fuselaje en forma de bala con alas en flecha, una cola elevada, patines de aterrizaje y protectores laterales. El piloto se sentaba en una cabina presurizada y aerodinámica, con un asiento eyectable convencional, ya que la posición boca abajo del 346 se consideraba demasiado incómoda. Sin embargo, a diferencia del 346, el Bisnovat 5 iba a utilizar un Pe-8 como portaaviones. Antes de comenzar las pruebas a gran escala, TsAGI realizaría pruebas en túnel de viento hasta Mach 1,45, allanando el camino para las pruebas de vuelo. Desafortunadamente, las cosas no salieron bien desde el principio. El primer lanzamiento de prueba sin motor provocó que el prototipo chocara contra el Pe-8 justo después de su lanzamiento, y los vuelos posteriores revelaron una estabilidad lateral deficiente, lo que finalmente provocó el accidente del primer prototipo. El segundo prototipo volaría en enero de 1949, implementando modificaciones para corregir los problemas de estabilidad. Desafortunadamente, el Bisnovat 5 nunca realizó un vuelo con motor. Resultó satisfactorio, pero los X-1 y D-558-2 estadounidenses ya habían superado la barrera del sonido, al igual que el Lavochkin La-176. La plataforma de pruebas de alta velocidad del Bisnovat 5 ya no era necesaria, por lo que, en junio de 1949, el proyecto finalizó.


Tsybin LL

En septiembre de 1945, Tsybin recibió el encargo de desarrollar nuevas formas de ala para vuelos de alta velocidad. En colaboración con TsAGI, Tsybin creó dos nuevos diseños de alas: uno convencional sin flecha y el otro con flecha hacia adelante. Estas alas se instalaron en un fuselaje desarrollado por Bereznev, equipado con un motor cohete para pruebas. El diseño de alas rectas voló por primera vez a mediados de 1947, siendo remolcado hasta la altitud de lanzamiento por un Tu-2. A finales de año, el LL fue equipado con alas en flecha hacia adelante. Estas alas representaban un cambio radical respecto a cualquier diseño anterior: presentaban una flecha de 30 grados y un diedro de 12 grados. Volaría al año siguiente, realizando más de 100 vuelos y alcanzando una velocidad máxima de Mach 0,97 sin incidentes. El proyecto proporcionó una gran cantidad de datos valiosos sobre vuelos de alta velocidad, pero la novedosa forma de ala no seguiría adelante.


Yakovlev Yak-1000

En 1950, Yakovlev recibió instrucciones de desarrollar un caza supersónico experimental basado en el turborreactor AL-5. Con la esperanza de alcanzar velocidades cercanas a Mach 2, Yakovlev siguió de cerca las recomendaciones de TsAGI para un avión compacto con un ala delta recortada. Se utilizó un tren de aterrizaje de ciclo y, a pesar del uso de puntales estabilizadores para estabilizar la aeronave en tierra, la pista del tren de aterrizaje permaneció peligrosamente estrecha. Desafortunadamente, el AL-5 sufrió retrasos a medida que avanzaba el Yak-1000, por lo que se lo sustituyó por el RD-500. Si bien esto aún permitía un rendimiento supersónico, las pérdidas de rendimiento fueron suficientes para cambiar el enfoque del programa a un avión puramente de demostración. El prototipo del Yak-1000 se completó a principios de 1951, comenzando las pruebas de rodaje en marzo. Desafortunadamente, en el segundo día de pruebas, una fuerte ráfaga de viento sacó al avión de la pista durante una prueba de rodaje a alta velocidad. Los daños resultantes del incidente dejaron en tierra al Yak-1000 mientras se reparaba el prototipo y los ingenieros trabajaban para solucionar los problemas de inestabilidad detectados durante las breves pruebas. Sin embargo, al final, los esfuerzos fueron breves: el Yak-1000 se canceló en octubre de 1951.


Mikoyan Gurevich SM-12

Con la entrada en servicio del MiG-19S, MiG se apoderó de varios ejemplares para que sirvieran como banco de pruebas para las nuevas tomas de aire de alta velocidad. Bajo la designación SM-12, el nuevo avión debía ser una conversión simple del MiG-19, conservando la mayor parte del fuselaje y las alas, así como el armamento. Los dos primeros prototipos eran poco más que un MiG-19S con una toma de aire refinada y un cono de choque. La conversión fue bastante sencilla, por lo que los primeros ejemplares despegarían en 1956. El tercer prototipo estaba equipado con motores mejorados, lo que le permitía alcanzar velocidades significativamente superiores a las de los otros dos aviones. Por ello, el SM-12 se consideró para su uso como interceptor de defensa puntual. Los prototipos posteriores recibirían la designación SM-12PM, reemplazando el armamento del MiG-19S con un radar de intercepción aérea y dos misiles K-5M de haz de luz. En 1958, MiG fue un paso más allá al incorporar un cohete propulsor en el sexto prototipo para permitir que el SM-12PM alcanzara una velocidad máxima de Mach 1,69. Sin embargo, el programa terminaría allí: se decidió fabricar el Ye-7 como MiG-21.


Mikoyan Gurevich Ye-50

Tras la selección del Ye-4 de ala delta en lugar del Ye-2 de ala en flecha para convertirse en el MiG-21, MiG tomó el prototipo del Ye-2 y lo transformó para que sirviera como banco de pruebas para diversos conceptos de interceptores. Bajo la designación Ye-50, los Ye-2 fueron equipados con un cohete propulsor S-155 en la base del alerón de cola. Otras modificaciones fueron menores, como la eliminación de uno de los tres cañones de 30 mm con los que estaban armados los prototipos. Las pruebas de vuelo comenzaron en 1956. Durante las pruebas, al menos uno de los prototipos fue modificado aún más, con un morro extendido y la eliminación de todo el armamento, mientras que otro fue sometido a una remodelación más exhaustiva con un nuevo turborreactor R-11E-300 y un gran tanque de combustible ventral. En general, las pruebas fueron satisfactorias: el Ye-50 demostró ser capaz de alcanzar Mach 2,3, y el cohete propulsor extendió el techo de vuelo a 23 km. Se consideró su uso como interceptor U-2 dedicado, pero nunca llegó a producirse.


Matveyev Turbolet

El primer diseño de plataforma VTOL a reacción de la URSS, el Turbolet, tomaría forma en la década de 1950 bajo el mando del LII (Instituto de Investigación de Vuelo). Al igual que muchos de los primeros bancos de pruebas VTOL, el Turbolet era rudimentario y poco práctico. Consistía en un gran motor de turbina montado verticalmente con un andamiaje a su alrededor para sostener un tren de aterrizaje de cuatro puntos, una cabina y toberas de reacción en los estabilizadores para la estabilización. Para proporcionar control, el flujo de aire del motor podía ventilarse hacia las cuatro toberas de los estabilizadores. Las pruebas de vuelo comenzaron en 1957, con vuelos realizados por el más destacado piloto de pruebas de helicópteros de la URSS. El alcance de las pruebas no está claro, pero el programa parece haberse desarrollado sin incidentes, proporcionando datos valiosos para un programa naciente de aviones VTOL.


Tsybin NM-1

En 1955, Tsybin fue seleccionado para desarrollar un avión de ataque/reconocimiento con estatorreactor que alcanzara Mach 3. Con el diseño final designado como RS, Tsybin recibió el encargo de crear un demostrador tecnológico a escala real con la designación NM-1. El NM-1 era una versión simplificada del diseño final, que incorporaba turborreactores AL-5 de eficacia probada en lugar de estatorreactores y estaba optimizado para cargas más ligeras. A diferencia del producto final planificado, el NM-1 despegaría por sus propios medios en lugar de ser lanzado desde un Tu-95. Sin embargo, el tren de aterrizaje seguía siendo sencillo: un carro desechable para el despegue y patines retráctiles para el aterrizaje. Al comenzar las obras del NM-1, se determinó que el RS no era capaz de cumplir con los requisitos del proyecto, por lo que se modificó, eliminando la función de ataque nuclear y adoptando la designación RSR.

El NM-1 despegó en 1959. Las pruebas se centraron en el rendimiento a baja velocidad, ya que se preveía que el diseño presentara problemas a bajas velocidades. El primer vuelo reveló que la aeronave tenía una velocidad de despegue y aterrizaje mucho mayor de lo previsto, pero por lo demás era aerodinámicamente estable. Se realizaron 32 pruebas, y el NM-1 se manejó bien. A pesar de su alta velocidad de pérdida, los pilotos de prueba informaron favorablemente sobre las características de despegue y aterrizaje, declarando que era más fácil que en un MiG o un Sukhoi. Aunque el NM-1 proporcionó datos invaluables que se aplicaron al RSR, el producto final nunca se vería. Se completaron cinco fuselajes, a la espera de motores, en 1961, cuando Nikita Khrushchev lo canceló debido a un nuevo énfasis en los misiles balísticos.


Mikoyan Gurevich Ye-8

En 1961, MiG recibió el encargo de desarrollar un sustituto del MiG-21. Tomando como base el MiG-21, MiG modificó sustancialmente la aeronave para crear el Ye-8. El Ye-8 contaba con un morro completamente rediseñado para alojar el radar Sapfir-21, lo que obligó a MiG a desplazar la entrada de aire bajo el morro. También se añadieron numerosas innovaciones, como canards de libre flotación, flaps soplados y una aleta ventral plegable. Para completar, se instaló el nuevo motor R-21F. El Ye-8 realizó su primer vuelo en abril de 1962. Ese mismo septiembre, el primer prototipo se perdió debido a una catastrófica falla del motor a Mach 1,7. Una investigación posterior del accidente reveló problemas de oscilación lateral que provocarían barrenas incontrolables, así como numerosos otros problemas técnicos. Aunque el Ye-8 había servido como un útil banco de pruebas para diversas tecnologías nuevas, tuvo que ser abandonado.


Beriev Be-1

En 1956, Bartini acudió a Beriev con una propuesta para un vehículo de efecto suelo. A Beriev le gustó la propuesta y encargó un banco de pruebas a pequeña escala para explorar las características de dicha aeronave. El banco de pruebas, denominado Be-1, consistía en un hidroavión con dos flotadores conectados al fuselaje por un ala de muy baja relación de aspecto. Paneles alares más pequeños se extendían más allá de los flotadores, y pequeños hidroplanos se colocaron debajo de estos para facilitar el despegue. Un único turborreactor RU-19, colocado sobre el fuselaje, propulsaba el diseño. El Be-1 despegó por primera vez en 1961, comenzando con vuelos desde tierra. Las pruebas de vuelo continuaron durante varios años, pasando gradualmente a vuelos sobre el agua y validando el concepto de un vehículo de efecto suelo.


Túpolev Tu-95LAL

En 1955, Myasishchev y Tupolev recibieron el encargo de iniciar el desarrollo de un bombardero de propulsión nuclear. Mientras Kuznetsov y Lyulka perfeccionaban los detalles de los motores, Tupolev procedió con un demostrador para examinar la viabilidad de utilizar un reactor nuclear aerotransportado. Se modificó un Tu-95M para esta función, adoptando la designación Tu-95LAL. Se instaló un pequeño reactor nuclear en la bodega de bombas trasera, junto con varios elementos de protección contra la radiación. El reactor no proporcionaba energía a la aeronave, ya que el Tu-95LAL estaba destinado principalmente a probar la seguridad del sistema. El reactor se encendió en 1958, lo que permitió el inicio de las pruebas en tierra, y en 1961 el Tu-95LAL realizó su primer vuelo. Los primeros vuelos se realizaron con el reactor apagado, aunque las pruebas posteriores se realizarían con un reactor en funcionamiento. Las pruebas revelaron que la protección contra la radiación era satisfactoria, por lo que se prosiguió con el trabajo en el Tu-119, que utilizaría el reactor para propulsar los dos motores internos. Sin embargo, el proyecto nunca abandonaría la mesa de dibujo: el cambio hacia misiles balísticos, así como las preocupaciones de seguridad en caso de accidente, llevaron a la cancelación del programa de bombarderos de propulsión nuclear.


Alekseev SM-1

Paralelamente al demostrador de vehículos de efecto suelo de Beriev, la Oficina de Diseño de Alekseev (OKB) había iniciado su propio programa de vehículos de efecto suelo. Desde el final de la Segunda Guerra Mundial, Alekseev había impulsado con ahínco el desarrollo de un vehículo de efecto suelo para operaciones navales costeras, y en 1960 finalmente obtuvo la aprobación para un demostrador a escala real. Designado SM-1, el avión era bastante largo, con alas en tándem de baja relación de aspecto y propulsado por un único turborreactor montado sobre el fuselaje. Una tripulación de tres o cuatro personas se alojaba en una cabina en tándem en el fuselaje. El SM-1 realizaría su primer vuelo en julio de 1961. Las pruebas iniciales resultaron deficientes, debido a su altísima velocidad de despegue y su deficiente manejo. Sin embargo, al reconstruirlo con una cola en T, se solucionaron los problemas más graves. Durante las pruebas, Alekseev organizó un viaje para el futuro ministro de Defensa, lo que brindó un gran apoyo al proyecto. Desafortunadamente, las pruebas terminaron antes de tiempo cuando el segundo prototipo resultó gravemente dañado en un incendio y el primero se estrelló en enero de 1961. Las pruebas del concepto continuarían, pero la carrera del SM-1 había terminado.


Alekseev SM-2

Tras sufrir daños en el hangar del segundo prototipo del SM-1, se reconstruyó como el SM-2 perfeccionado. Al despegar en 1962, el SM-2 se basó en las lecciones aprendidas del SM-1, utilizando un diseño más aerodinámico (en particular, en el montaje del motor). Se montaron dos motores en la aeronave: uno en la cola y otro en el morro. Mientras que el motor trasero ventilaba normalmente, el motor delantero lo hacía bajo las alas, mejorando la sustentación por efecto suelo. Sin embargo, el SM-2 seguía demostrando velocidades de despegue impracticables. Si bien representaba una mejora definitiva respecto al SM-1, el concepto aún tenía un largo camino por recorrer. Afortunadamente, una demostración exitosa ante Kruschev bastó para que Alekseev apoyara un demostrador a mayor escala.


Instituto de Aviación de Moscú MAI-62

En 1958, un equipo de estudiantes del Instituto de Aviación de Moscú comenzó a trabajar en un avión experimental sin cola, denominado MAI-62. El MAI-62 era un diseño compacto propulsado por un único motor de 80 hp montado detrás de la cabina. Si bien la configuración sin cola no era nueva, las superficies de control sí lo eran. En cada punta de ala, una superficie se extendía directamente hacia atrás, más allá del borde de fuga. Estas superficies largas y delgadas actuarían como elevones para proporcionar control. Las pruebas comenzaron en 1962. Aunque el MAI-62 presentaba problemas de sobrecalentamiento, aparentemente tuvo un rendimiento razonablemente bueno, lo que le valió al equipo de diseño sus diplomas y una medalla.


Yakovlev Yak-36 “Mano alzada”

En 1961, Yakovlev recibió el encargo de desarrollar un demostrador práctico de aviones VTOL. Mientras Yakovlev trabajaba en el fuselaje, Tumansky comenzó a adaptar el turborreactor R-27 a una variante sin postcombustión con toberas vectorizadoras de empuje. Si bien el Yak-36 resultante era más práctico que los diseños de "cama voladora" que lo precedieron, difícilmente podía considerarse práctico. Los dos turborreactores R-27-300 ocupaban la mayor parte del fuselaje y estaban ubicados sobre el centro de gravedad, lo que dejaba poco espacio para la cabina, el combustible o cualquier otro equipo de misión. Las alas y la cola parecían más bien una idea de último momento, destinadas a proporcionar espacio para las ruedas de los estabilizadores y un punto de ventilación para el aire de purga y la estabilización. De hecho, el largo auge del morro existía con el único propósito de proporcionar un puerto de soplado delantero. El alcance era extremadamente corto, de tan solo 200 millas náuticas, al igual que la carga útil: dos puntos de anclaje proporcionaban una capacidad total de 200 kg de provisiones.

Las pruebas de vuelo del Yak-36 comenzaron en enero de 1963 con estacionarios cautivos. Desde el principio, se encontraron con problemas de reingestión de gases calientes que minaban la potencia del motor, y el sistema de purga de aire, diseñado para proporcionar control en vuelo estacionario, resultó problemático. Se realizaron varias modificaciones para solucionar los problemas antes de que finalmente se pudieran realizar vuelos no cautivos (con vuelos convencionales) a mediados de 1964. El primer vuelo VTOL completo, con despegue vertical, transición a vuelo horizontal y aterrizaje vertical, tuvo que esperar hasta 1966. Al año siguiente, se presentó a Occidente en una exhibición aérea. Aunque se presentó como un avión de combate (se equipó con pods de cohetes durante demostraciones públicas) y recibió la designación OTAN ("Freehand"), no hubo una intención seria de poner en servicio el Yak-36. Su rendimiento marginal lo hizo inservible para cualquier uso práctico. Aunque el Yak-36M que lo sucedió inicialmente compartiría su designación, se transformó en un diseño completamente nuevo, adoptando el nombre Yak-38. Sin embargo, se mantuvieron elementos del programa Yak-36, en particular el sistema de eyección automática que se desarrolló, pero nunca se instaló, en el Yak-36.


Alekseev SM-¾

Tras las exitosas pruebas del SM-2, los siguientes ekranoplanos de Alekseev se basarían en el concepto de ala soplada. El SM-3 y el SM-4, de mayor tamaño, compartirían la configuración de motor en tándem de sus predecesores, pero incorporarían una tobera mejorada para el motor delantero. Un novedoso diseño de tobera distribuía los gases de escape en un área más amplia, mejorando la sustentación en una parte más extensa del ala. El SM-3 despegó en 1962 y, tras validar el diseño básico, se configuró el SM-4 a mayor escala. Las pruebas transcurrieron sin incidentes, allanando el camino para el desarrollo posterior del ekranoplano.


Alekseev SM-5

Paralelamente a los demostradores SM-3 y SM-4, Alekseev creó el SM-5. El SM-5 era un diseño más refinado, basado en experimentos previos, que sirvió como demostrador a escala reducida de lo que se convertiría en el gigantesco ekranoplano KM. El SM-5 incorporó numerosos cambios, como el desplazamiento de la cabina al extremo frontal del avión y la incorporación de las toberas especiales de soplado de alas desarrolladas en diseños anteriores. Las pruebas comenzaron en 1963 o 1964, pero la trayectoria del SM-5 se vio trágicamente truncada cuando, al parecer, se topó con una potente ráfaga de viento durante las pruebas, lo que hizo que la aeronave perdiera el control y provocara un accidente que causó la muerte de la tripulación.


Sukhoi S-22I

Aunque el Su-7B se había convertido en la columna vertebral del cuerpo de ataque de la VVS Frontal Aviation, su diseño de ala muy en flecha había resultado en una carga útil y un rendimiento generalmente bajos, especialmente en despegue y aterrizaje. Con la esperanza de mejorar la carga útil y las capacidades en pistas cortas, Sukhoi buscó la solución en alas de geometría variable. Un Su-7 se convertiría en un demostrador tecnológico, con alas completamente nuevas que incorporaban paneles de geometría variable en el exterior del tren de aterrizaje. Aunque solo las secciones más externas del ala podían cambiar su flecha, el impacto del cambio fue significativo cuando el S-22I voló por primera vez en 1966. Las capacidades de alta velocidad del Su-7 se mantuvieron, pero las pruebas revelaron que las alas oscilantes aumentaban la carga útil en un 50%, a la vez que reducían a la mitad la carrera de despegue y aterrizaje y duplicaban el alcance efectivo. El S-22I fue un éxito rotundo, allanando el camino para posteriores modificaciones del diseño que dieron lugar al Su-17.


Sukhoi T-58VD

A mediados de la década de 1960, un renovado interés en los aviones STOL dio lugar a dos conceptos divergentes. Si bien las alas de geometría variable ofrecían una solución, el reciente desarrollo de los reactores de sustentación compactos RD-36 parecía ofrecer una solución mecánicamente más sencilla. Por ello, Sukhoi convertiría el T-58D-1, el primer prototipo del Su-15, en un banco de pruebas. El T-58VD, como se le denominó, estaba equipado con tres motores RD-36-35 a lo largo del eje central del fuselaje, lo que obligó al desarrollo de una sección central del fuselaje completamente nueva. Las pruebas comenzaron en 1966, con resultados generalmente buenos. Aunque los motores no proporcionaban suficiente empuje para elevar el avión por sí solos, redujeron la velocidad de despegue en 100 km/h y las carreras de despegue y aterrizaje de 1170 m y 1000 m a 500 m y 600 m, respectivamente. Las pruebas detectaron un problema con la ubicación de los motores, lo que provocó un fuerte cabeceo, pero se solucionó dejando el motor delantero apagado para los aterrizajes. Las pruebas finalizaron en 1967 tras proporcionar datos invaluables a Sukhoi.


Alekseev SM-8

Aunque el SM-5 había fracasado catastróficamente, el desarrollo del Ekranoplan no se vio frenado. El SM-8 sería la siguiente etapa del desarrollo del KM, incorporando diversas mejoras al diseño del SM-5 para asegurar que un accidente tan catastrófico no se repitiera. El SM-8 presentaba una cola más grande con un diedro alto, así como grandes cubiertas que rodeaban las tomas de aire de los motores. Aunque era más grande que el SM-5, seguía siendo eclipsado por el KM que se construyó junto a él. Inusualmente, aunque el SM-8 se concibió como un prototipo a escala inferior del KM, comenzó a probarse junto con su primo de mayor tamaño. Las pruebas fueron bien, pero a medida que avanzaba el programa, el SM-8 quedó en el camino, eclipsado por el enorme KM.


Alekseev K. M.

La culminación de la última media década de desarrollo del ekranoplano sería el gigantesco KM. El KM fue el diseño más grande creado hasta la fecha por la Oficina de Diseño de Alekseev, y de hecho, el ekranoplano más grande de la historia. Cuatro veces más grande que el SM-8, tenía un peso máximo de despegue de 544 toneladas métricas. Mientras que los diseños anteriores dependían del empuje vectorial de un solo motor para el impulso de las alas, el KM contaba con ocho motores montados en pilones delante de las alas para el mismo propósito. En total, el leviatán tenía diez turborreactores VD-7: ocho cerca del morro y otros dos montados a media altura de la cola. El KM surcaría los cielos en 1966 con el propio Alekseev a los mandos. Concebido nominalmente como un prototipo de transporte, nunca entró en producción. En cambio, vivió su carrera como un vehículo de pruebas único. A pesar de no producirse, el KM no dejó de impresionar. Hasta el vuelo del AN-225, era el aparato volador más pesado de la historia, y con una velocidad de crucero de 232 nudos, parecía ofrecer un cómodo equilibrio entre la velocidad de un avión de transporte estratégico y la carga útil de un buque. La trayectoria del KM llegó a su fin en 1980, cuando un error del piloto provocó un accidente. Aunque no se reportaron víctimas mortales, el KM era demasiado pesado para ser rescatado, por lo que se dejó hundir.


Mikoyan Gurevich MiG-21PD

Paralelamente a los experimentos de Sukhoi con propulsores de sustentación, MiG llevaba a cabo sus propios bancos de pruebas STOL de propulsores de sustentación para un sucesor del MiG-21. Su primer experimento de este tipo sería el MiG-21PD. Se modificó un MiG-21PFM para esta función mediante la instalación de una sección de 900 mm en el centro de gravedad, equipada con dos propulsores de sustentación RD-36. La única otra modificación significativa parece ser la fijación del tren de aterrizaje. En general, la conversión fue bastante rápida y sencilla, lo que permitió que las pruebas comenzaran a mediados de 1966. Las pruebas finalizaron en 1967, pero no antes de que se presentara públicamente ante los funcionarios del Partido. Aunque el MiG-21PD no proseguiría su desarrollo, proporcionó información valiosa para el nuevo programa de cazas de MiG.


Mikoyan Gurevich Ye-23DPD/MiG-23PD

Paralelamente al MiG-21PD, MiG desarrollaba un prototipo más práctico para su sucesor, el MiG-21. Compitiendo con el Ye-23IG de ala oscilante (que finalmente se convertiría en el prototipo del MiG-23), el Ye-23DPD se desarrolló utilizando la misma tecnología de propulsión a reacción demostrada en el MiG-21PD. Se mantuvieron las mismas superficies delta de cola del MiG-21, aunque con algunas modificaciones, y se utilizaron entradas de cono de choque a ambos lados del fuselaje. La pieza central del diseño eran los dos propulsores de reacción RD-36 montados en el fuselaje y los flaps soplados para operaciones STOL. Realizaría su primer vuelo en abril de 1967, realizando pruebas comparativas con el Ye-23IG. Desafortunadamente, la carrera de pruebas del Ye-23DPD fue muy breve: el Ye-23IG de ala oscilante fue seleccionado para su desarrollo completo con bastante rapidez, y el programa de pruebas del Ye-23DPD se interrumpió antes de que se pudiera examinar realmente algo más allá de las características de despegue y aterrizaje.


Sukhoi T-6-1

Basándose en la experiencia con el T-58VD, Sukhoi seguiría el ejemplo de MiG y construiría dos prototipos rivales para su nuevo avión. Concebido como plataforma de ataque, Sukhoi desarrollaría un avión de ala alta con asientos contiguos, denominado T-6. El primer prototipo, el T-6-1, estaba equipado con un ala delta convencional y cuatro propulsores verticales, mientras que el segundo prototipo contaba con alas pivotantes. El T-6-1 superaría a su competidor en el vuelo, volando a mediados de 1967, pero acabaría perdiendo la final, ya que la propuesta de alas pivotantes se consideró más flexible. Aunque se rechazó su producción, el T-6-1 continuó demostrando su utilidad, volando hasta 1974 como banco de pruebas para diversos equipos electrónicos.