Mostrando entradas con la etiqueta drones. Mostrar todas las entradas
Mostrando entradas con la etiqueta drones. Mostrar todas las entradas

domingo, 23 de noviembre de 2025

Geranio-2/3: Doctrina de enjambre


Drones kamikazes Geranio-2/3: su fuerza está en el enjambre






En comparación con las "águilas" de los misiles hipersonicos, los "halcones" de los misiles táctico-operativos y los "cernícalos" de los misiles de crucero de bajo vuelo, los pequeños "Geranks" zumbantes se parecen más a los insectos. Pero no hay que subestimarlos, ya que nadie subestimará el enjambre de drones, porque su fuerza está en el enjambre.
Sí, los UAVs kamikazse de la familia Geranio muestran la máxima efectividad en el uso grupal, cuando la mayor vulnerabilidad de los sistemas de defensa aérea y la potencia limitada de las ojivas se compensan con la cantidad de maquinas utilizadas simultáneamente.

El problema es que cuando los UAVs kamikazes se utilizan en cientos de unidades por día, incluso su lanzamiento en un corto período de tiempo se convierte en una medida organizativa y técnica bastante compleja.
El uso de UAVs kamikazes individuales de la familia Geranio no es un problema y se puede llevar a cabo incluso desde guías instaladas en la carrocería de un automóvil pequeño o, por ejemplo, desde una pequeña área camuflada en el borde de un cinturón forestal.
Si bien los Geranios se usaron en la cantidad de varias docenas de unidades por día, este fue el caso, pero ahora deben lanzarse en cientos, y en el futuro, miles, en una hora o menos. Según la información publicada en una serie de recursos abiertos, actualmente se lanzan cientos de UAVs kamikaze Geranium desde aeródromos asignados específicamente para este propósito, donde están equipados docenas de sitios de lanzamiento.

Parecería que no hay problema, ¿seguramente estos aeródromos están ubicados en una retaguardia relativamente segura?

Es poco probable que esta "seguridad" dure mucho: tarde o temprano, las armas de largo alcance de alta precisión del enemigo volarán a los aeródromos, sitios de lanzamiento de UAVs kamikazes de largo alcance.

Y si los lanzamientos de un número limitado de vehículos aéreos no tripulados kamikaze ukros, con la ayuda de los cuales aterrorizan la infraestructura civil rusa, aún pueden detenerse con la ayuda de sistemas de defensa aérea, entonces será mucho más difícil protegerse contra misiles de crucero sigilosos que vuelan a baja altura y misiles tácticos operativos de alta velocidad con ojivas de racimo.

Y tales misiles definitivamente aparecerán en manos de los ukros, ya sea que se entreguen oficialmente o se hagan pasar por "desarrollo ucraniano", todo esto es solo cuestión de tiempo. Y esto significa que la necesidad de lanzamientos masivos de UAVs kamikazes de la familia Geranio debe combinarse con el sigilo, y preferiblemente con la movilidad de los sitios de lanzamiento.
A primera vista, esto no debería ser un problema: en Internet hay imágenes de lanzamientos del UAV kamikaze Shahed-136 desde lanzadores (PU) de varios niveles de tipo contenedor colocados en el chasis de un automóvil. Nada impide la implementación de lanzadores similares para UAV kamikaze de la familia Geranio.

Teniendo en cuenta que los nuevos drones Geranios tienen un rango de vuelo casi estratégico, unos 2500 kms y que pueden cargar una ojiva entre 90-150 kgs, su utilidad como arma de ataque en configuración de enjambre, podría tener un impacto brutal en el campo de batalla.
Y finalmente, hay que hablar de la modernización radical de los UAV kamikaze de la familia Geranio, convirtiéndolos en una apariencia de misil de crucero.
La baja velocidad de vuelo del UAV kamikaze de la familia Geranio, equipado con un motor de pistón, es tanto una ventaja como una desventaja.

Por un lado, la baja velocidad reduce la visibilidad de los UAV para las estaciones de radar enemigas (radares) al reducir el efecto Doppler, mientras que la firma térmica del motor de pistón también es baja, al menos las cabezas de búsqueda infrarroja (IR seeker) de los misiles guiados antiaéreos (SAM) los capturan mal.

Además, es bastante difícil derribar vehículos aéreos no tripulados de movimiento lento con la ayuda de cazas: los misiles aire-aire los capturan mal y son muy caros, y cuando se dispara desde un cañón, puede volar hacia los restos de un objetivo derribado, como las Fuerzas Armadas de Ucrania pudieron verificar repetidamente a partir de su propia experiencia.

Sin embargo, los UAV kamikaze de baja velocidad y bajo vuelo son muy vulnerables a las armas pequeñas y los cañones, además, los ukros han adaptado los drones FPV para interceptar Geranios, convirtiéndolos efectivamente en interceptores FPV.

Hace unos años, Irán mostró el UAV kamikaze Shahed-138, equipado con un motor turborreactor (TRD). Después de un tiempo, apareció información sobre los UAV kamikaze rusos Geranium con motores turborreactores, presumiblemente, tal modificación recibió la designación "Geran-3", y luego los medios de los ukros también comenzaron a hablar sobre el uso de jets Geranium.
Parece que esta es la solución, porque debido a la alta velocidad de vuelo, ¿estos UAV kamikaze Geran-3 son casi tan difíciles de derribar como los misiles de crucero?

Sin embargo, no todo es tan sencillo, el problema es que un motor turborreactor es un producto muy caro, la diferencia en el coste de un motor turborreactor y un motor de pistón puede ser de varios órdenes de magnitud.

Además, el aumento de la velocidad y la alta temperatura del motor turborreactor aumentan la visibilidad del UAV para los medios de detección de radar e infrarrojos y, por lo tanto, la vulnerabilidad a los sistemas de misiles antiaéreos (SAM) enemigos. Y el aumento del costo del UAV kamikaze debido al uso de motores turborreactores lo convierte en un objetivo bastante atractivo incluso para la destrucción con la ayuda de misiles y misiles aire-aire.

Sin embargo, existe la oportunidad de aumentar la velocidad de los UAV kamikaze "a bajo costo", para usar un motor de respiración de aire pulsado (PuVRD), que se usó en los misiles de crucero alemanes V-1 durante la Segunda Guerra Mundial.

En comparación con el motor turborreactor, el PuVRD consta casi solo de desventajas: es un motor a reacción ruidoso, caliente y que consume combustible, pero tiene una ventaja crítica: si se optimizan sus procesos de diseño y producción, el PuVRD será mucho más barato que el motor turborreactor, su costo puede ser comparable al costo de un motor de pistón de un "ciclomotor".

De hecho, el PuVRD es un tubo curvo con un dispositivo de inyección de combustible, en el que no hay partes giratorias, álabes de turbina resistentes al calor y otras piezas complejas y costosas. este podría ser el nuevo hito en la creación de nuevos modelos de UAVs.
Una cosa es segura: la familia de UAV Geranio continuará desarrollándose y, con la ayuda de estas armas, las Fuerzas Armadas de la Federación Rusa continuarán atacando objetivos en toda la profundidad del territorio enemigo.
En el actual contexto, nadie esta preparado para enfrentar un ataque de oleadas de drones Geranios en una configuración coordinada por la IA.

martes, 15 de julio de 2025

Reconocimiento electrónico con drones

Detección de RF de próxima generación con RFeye Node Plus de CRFS

Por Armada Internacional

RFeye Node Plus como carga útil de UAV

Impulsadas por los avances en las tecnologías modernas de comunicación, radar y guerra electrónica (EW), las señales de radiofrecuencia (RF) se están volviendo cada vez más complejas. Detectar estas señales es cada vez más difícil en entornos cada vez más concurridos, y las herramientas tradicionales de monitoreo del espectro tienen dificultades para mantenerse al día.

CRFS ha establecido un nuevo estándar en inteligencia de RF. El RFeye Node Plus es la próxima generación en detección de RF y superioridad espectral, diseñado para ofrecer inteligencia de señales en tiempo real, transmisión de datos I/Q de alta velocidad y grabación de larga duración para análisis forense.

Este artículo explora cinco escenarios operativos clave y demuestra cómo RFeye Node Plus mejora las misiones de SIGINT, EW, ISR y gestión del espectro.

Kits de despliegue rápido para ESM y conocimiento del campo de batalla

El despliegue de capacidades de registro de información y calidad (I/Q) cerca del Borde Avanzado del Área de Batalla (FEBA) permite a los operadores de guerra electrónica realizar ESM en entornos disputados, ya sea como parte del ciclo OODA o del ciclo de selección de blancos. La inteligencia resultante puede ayudar a:

  • Identificar y clasificar señales hostiles de radar, comunicación o interferencias.
  • Observar cambios en la actividad de guerra electrónica enemiga

La implementación de un RFeye Node Plus con una unidad de estado sólido (SSD) de 16 TB integrada en un mástil de implementación rápida proporciona una solución EW flexible y rentable para operaciones avanzadas.

  • La grabación de datos I/Q locales a 100 MHz IBW durante hasta 8 horas permite la captura de señales de larga duración en entornos de alta amenaza
  • El almacenamiento SSD seguro garantiza la retención de datos incluso sin conexiones de red

RFeye DeepView permite a los operadores analizar, filtrar y extraer señales de interés (SOI) de un gran conjunto de datos registrados. Los operadores pueden:

  • Encuentre señales LPI/LPD diseñadas para evadir la detección
  • Correlacionar la actividad de los emisores enemigos con los movimientos en el campo de batalla
  • Realizar análisis forenses de RF en el posprocesamiento para desarrollar contramedidas de guerra electrónica


Varias unidades para SIGINT, COMINT, FISINT y ELINT

La implementación de múltiples sensores RFeye Node Plus permite la recopilación de SIGINT multicanal de banda ancha, cada uno con una capacidad de 100 MHz de datos I/Q sin procesar. Al conectarse en red, estos sensores RF permiten:

  • Cobertura simultánea de diferentes bandas de frecuencia (por ejemplo, HF para COMINT y SHF para ELINT)
  • Integración con el software SIGINT

Cada RFeye Node Plus se conecta a través de un cable de fibra 10GigE robusto a una PC de control que ejecuta RFeye Site , lo que proporciona a los operadores visibilidad en tiempo real del entorno electromagnético (EME).

Para operaciones SIGINT en tiempo real, RFeye DeepView transmite datos I/Q en formato VITA-49, lo que garantiza la interoperabilidad con herramientas de análisis SIGINT de terceros.

Este ecosistema interoperable permite operaciones SIGINT flexibles, mejorando la superioridad del espectro y la extracción de inteligencia de RF en tiempo real.

RFeye Node Plus integrado en un UAV para ISR o ISTAR

La integración de un RFeye Node Plus como carga útil de un UAV permite una grabación I/Q de alta fidelidad al tiempo que maximiza la línea de visión para una mejor detección de RF.

  • El SSD de 8 TB integrado permite hasta cuatro horas de grabación de datos I/Q de 100 MHz
  • El UAV puede capturar la actividad de RF de banda ancha en entornos disputados o denegados
  • Una mayor altitud aumenta la probabilidad de intercepción (POI), lo que reduce  la propagación por trayectos múltiples.

Tras la recuperación del UAV, el SSD se puede extraer fácilmente y conectar a un PC con RFeye DeepView. Los analistas pueden realizar análisis forenses de señales a partir de los datos I/Q capturados y extraer SOI para un análisis más profundo.



RFeye Node Plus como carga útil de UAV

Redes TDoA 3D avanzadas con sensor de transferencia

Una misión TDoA 3D requiere una red de al menos cuatro sensores de RF. Añadir un RFeye Node Plus a esta red mejorará significativamente sus capacidades. Gracias a su procesador de última generación, el RFeye Node Plus puede ejecutar misiones de detección de 3 a 4 veces más rápido que los RFeye Node estándar, lo que se traduce en un mayor POI y un resultado TDoA 3D mejorado gracias a su mayor potencia computacional.

Además de esta capacidad mejorada en tiempo real, los operadores también podrían necesitar extraer inteligencia mejorada de los datos I/Q. En este caso, cuando la red detecta y geolocaliza un SOI, se puede indicar inmediatamente al RFeye Node Plus que capture datos I/Q para su posprocesamiento, o bien, estos datos pueden transmitirse mediante VITA-49 directamente a una aplicación que proporcione SIGINT en tiempo real.

Registro de datos I/Q en un servidor para la planificación del espectro

Un RFeye Node Plus implementado en un mástil se puede conectar directamente a un servidor o PC de control a través de un enlace de fibra 10GigE robusto, lo que garantiza una transferencia de datos de RF de alta velocidad y en tiempo real con una latencia mínima.

Al registrar y almacenar datos I/Q durante varios días, los administradores del espectro pueden realizar análisis forenses profundos de señales utilizando RFeye DeepView.

Esta configuración proporciona un conjunto de datos de espectro continuo y de alta resolución que incluye datos del mundo real que mejorarán las operaciones del espectro electromagnético (EMSO).

Detección de RF de próxima generación

Las exigencias de la planificación del espectro y las operaciones del espectro electromagnético son cada vez mayores. El hardware de RF debe adaptarse a estas necesidades.

Al ofrecer el punto óptimo de captura I/Q de 100 MHz, almacenamiento SSD integrado (hasta 16 TB), un puerto SFP de 10 GigE y potencia de procesamiento aumentada en un factor de tres, RFeye Node Plus transforma el modo en que funcionan los sensores RF pasivos.

Visite CRFS para obtener más información sobre cómo CRFS ayuda a los operadores militares y de guerra electrónica: https://www.crfs.com/who-we-help/military-ew-operators


viernes, 7 de marzo de 2025

UAV: Drone utilitario Raybe VTOL (Indonesia)

El Raybe VTOL, un dron de fabricación indonesia con la Fuerza Aérea



Dron Raybe (foto: Terra Drone)

Los drones Raybe fabricados por PT Terra Drone Indonesia pueden competir con productos extranjeros en mapeo aéreo. Con características superiores como VTOL y certificación TKDN del 25%, Raybe es adecuado para su uso en condiciones extremas en Indonesia. Además del mapeo, este dron también se puede utilizar para otras aplicaciones, como la identificación de la salud de las plantas y la mitigación de desastres.

Los productos de drones fabricados en Indonesia no son menos competitivos que los fabricados en el extranjero. Uno de los drones fabricados localmente que puede competir con productos extranjeros es el dron Raybe fabricado por el fabricante con sede en Bandung, Bentara Tabang Indonesia (BETA). Raybe es un avión de despegue y aterrizaje vertical (VTOL) capaz de volar en áreas limitadas y tiene un alcance de hasta 50 km. Este dron Raybe también ha sido certificado con el Nivel de Componentes Domésticos (TKDN) por el Ministerio de Industria con el número 4996/SJ-IND.8/TKDN/6/2023 con componentes TKDN de hasta un 25%.

Desarrollado para satisfacer necesidades cartográficas complejas, RAYBE ofrece excelencia no sólo en flexibilidad sino también en precisión, asegurando una recopilación de datos precisa y eficiente. Con un diseño compacto, este dron puede despegar y aterrizar suavemente incluso en espacios limitados, lo que lo hace muy adecuado para mapear los contornos extremos de Indonesia.
La cartografía aérea presenta una serie de desafíos únicos, por lo tanto, RAYBE está aquí para superar varios desafíos al estar equipado con características superiores, que incluyen:

Especificaciones del Dron

  • Configuración: VTOL Tilt-Rotor Eléctrico
  • Material: Compuesto avanzado
  • Envergadura: 1830 mm
  • Planta alar: 1270 mm
  • Peso en vacío: 3650 gramos
  • MTOW (Peso Máximo de Despegue): 5200 gramos
  • Carga útil máxima: 500 gramos
  • Dimensiones del estuche rígido: 95x65x35 cm

Rendimiento

  • Tiempo de vuelo: Hasta 50 minutos
  • Alcance de telemetría LOS: Hasta 8 kilómetros
  • Velocidad máxima: 22 metros por segundo
  • Velocidad de crucero: 17 metros por segundo
  • Velocidad de pérdida: 14 metros por segundo

Opciones de carga útil:

  • Cámara RGB APS-C 20 MP
  • Cámara RGB Full Frame 24 MP
  • Cámara RGB Full Frame 42 MP
  • Cámara Multiespectral RedEdge-P
  • Gimbal de monitoreo Ultra HD 4K
  • Cámara RGB Full Frame 60 MP
  • Kit Módulo RTK EMLID Reach

Además de la cartografía, los drones Raybe también se pueden utilizar para otras aplicaciones, entre ellas:

  • Identificación de la salud de las plantas: el sensor multiespectral integrado de Raybe permite un mapeo de alta precisión de la salud y madurez de las plantas, basado en el análisis de la reflectancia y la densidad de las plantas.
  • Análisis de la condición del suelo: con la capacidad de evaluar las condiciones del suelo, como el contenido de humedad, el contenido de materia orgánica, los niveles de nutrientes y la textura del suelo, Raybe ayuda a una gestión más eficaz de los recursos agrícolas.
  • Censo y recuento de árboles: mediante el uso de imágenes aéreas obtenidas con drones, el censo y el recuento de árboles se pueden realizar de forma fácil y rápida.
  • Mitigación de desastres: Raybe se presenta como una herramienta confiable para mapear áreas afectadas por desastres naturales, como erupciones volcánicas, al producir ortofotos detalladas y mapas 3D.

Raybe VTOL ha sido ampliamente utilizado por varias empresas y agencias nacionales. Terra Drone Indonesia también utiliza Raybe para realizar diversos trabajos en las industrias de la construcción, la minería y la agricultura.


Indra Permana Sopian, CEO de BETA UAS, afirmó: "Raybe ya tiene un certificado TKDN, por lo que es muy adecuado para las compras gubernamentales. Los usuarios tampoco necesitan preocuparse porque Raybe es un producto local, si hay un problema o daño en el campo, el equipo de Raybe puede venir inmediatamente a repararlo o incluso enviar un dron de reemplazo. Solo el año pasado, Raybe fue adquirida por varias empresas como el Ministerio de PUPR, PT Timah Tbk, Adaro, Pusri, BNPB y PT POS para el lanzamiento de centros logísticos en IKN".

Michael Wishnu Wardana, director general de Terra Drone Indonesia, afirmó: “Terra Drone Indonesia depende en gran medida de los drones Raybe para diversos trabajos difíciles. Hasta el momento no ha habido problemas significativos durante su uso. Hace algún tiempo también adquirimos varias unidades Raybe para introducirlas en el centro de Japón y está previsto utilizarlas en varios países en el futuro”.

Como usuario que ha demostrado su superioridad, Terra Drone Indonesia, que también es revendedor de drones Raybe, puede presentar la tecnología y su uso a los clientes en Indonesia. Además de vender productos y servicios de drones Raybe, Terra Drone también ofrece capacitación para garantizar que los usuarios puedan aprovechar al máximo los drones.

  VRITimes 

domingo, 15 de diciembre de 2024

Ataque aéreo: El implacable resultado de un ataque simultáneo multidireccional

Ataque simultáneo multidireccional


Por Esteban McLaren para FDRA




1. Introducción

Un ataque multifrontal simultáneo es atacar un blanco desde distintas direcciones al mismo tiempo. Es un elemento costoso de conseguir porque exige muchos recursos dado que la fuerza de ataque debe cubrir al menos dos frentes o direcciones y, más difícil aún, debe ser coordinado, es decir todo el movimiento debe hacerse al mismo tiempo. ¿Qué dificultades enfrenta el defensor? La saturación. Defiende un frente y, por costo de oportunidad, desatiende el otro y viceversa. La historia presenta un caso apasionante.

La Batalla de Midway fue un punto de inflexión crucial en la Segunda Guerra Mundial, donde un ataque simultáneo no intencionado de las fuerzas aeronavales estadounidenses desempeñó un papel decisivo. Durante la batalla, los aviones estadounidenses lanzaron ataques secuenciales desde una misma dirección a la vez. Los comandantes de portaaviones llegaron a esquivar la mayoría de estos ataques (¡un capitán lo hizo más de 70 veces en ese fatídico día!), torpedos y bombas caían por las bordas de estos enormes buques pero ni hacían mella en ellos. Sin embargo, una partida de ataque dirigida por el comandante McClusky perdió su rumbo y al volver para re-encausar el ataque lo realizó desde un inesperado Suroeste, coincidiendo con otra partida de ataque dirigida por el teniente Leslie provenía de Noreste al mismo tiempo, sorprendiendo por completo a la flota japonesa. Este ataque simultáneo desde dos flancos diferentes, llevado a cabo principalmente por bombarderos en picado SBD Dauntless, resultó en la destrucción casi inmediata de tres portaaviones japoneses empezando por el Kaga, lo que cambió el curso de la guerra en el Pacífico.

Las consecuencias de este ataque fueron devastadoras para la Armada Imperial Japonesa. La pérdida de cuatro portaaviones, junto con pilotos experimentados y aviones, debilitó gravemente su capacidad operativa. Esta victoria permitió a los Estados Unidos pasar de una posición defensiva a una ofensiva en el teatro del Pacífico, alterando el equilibrio de poder y marcando el inicio del declive de la supremacía naval japonesa.

2. La Batalla de Midway

La Batalla de Midway, ocurrida del 4 al 7 de junio de 1942, es una de las confrontaciones más importantes de la Segunda Guerra Mundial en el Teatro del Pacífico, marcando un punto de inflexión en la guerra. Durante esta batalla, un evento crucial fue el ataque simultáneo de dos formaciones de aviones estadounidenses desde diferentes direcciones, lo que resultó en la devastadora destrucción de los portaaviones japoneses.


2.1 Contexto previo

El 4 de junio de 1942, las fuerzas japonesas, bajo el mando del almirante Isoroku Yamamoto, lanzaron un ataque contra Midway con la esperanza de eliminar la amenaza de los portaaviones estadounidenses y asegurar el dominio en el Pacífico. Los japoneses confiaban en la sorpresa y la superioridad numérica. Sin embargo, gracias a la ruptura del código japonés por parte de la inteligencia estadounidense, los norteamericanos sabían de antemano los planes japoneses y prepararon una emboscada.


2.2 Ataques iniciales y esquiva de los japoneses

En la mañana del 4 de junio, los aviones estadounidenses lanzaron una serie de ataques aéreos desde sus portaaviones USS Enterprise, USS Hornet, y USS Yorktown contra la flota japonesa. Estos ataques iniciales consistieron en oleadas de aviones torpederos (principalmente TBD Devastators) y bombarderos en picado (SBD Dauntless). Los aviones torpederos atacaron primero, pero fueron diezmados por los cazas japoneses y el fuego antiaéreo; casi todos los aviones torpederos fueron derribados, y no lograron impactar a los portaaviones japoneses.

Durante estos primeros ataques, los comandantes de los portaaviones japoneses, como el vicealmirante Chuichi Nagumo, realizaron maniobras evasivas efectivas, logrando evitar los torpedos lanzados por los aviones estadounidenses. La combinación de maniobras hábiles, la protección de cazas Zero, y la falta de coordinación entre las diferentes oleadas de ataque permitieron a la flota japonesa esquivar la destrucción.


2.3 El ataque simultáneo decisivo

Sin embargo, mientras los aviones torpederos estadounidenses mantenían ocupadas a las defensas japonesas volando bajo y atrayendo a los cazas Zeros hacia niveles bajos, una fuerza de bombarderos en picado SBD Dauntless de los portaaviones USS Enterprise y USS Yorktown llegó a la escena desde una dirección diferente y en altitud. Liderados por los comandantes de escuadrón como el Teniente Comandante Wade McClusky y el Capitán de Corbeta Max Leslie, estos aviones aprovecharon que los cazas japoneses estaban ocupados a baja altura y que las maniobras evasivas japonesas habían dejado a los portaaviones en posiciones vulnerables.

En un giro del destino, los bombarderos en picado atacaron simultáneamente desde dos direcciones distintas: desde el noroeste y el sudoeste, tomando por sorpresa a los japoneses. Son las líneas de ataque 1 y 2 convergiendo a los blancos mientras sorpresivamente aparece una enorme ala de ataque 3 desde el suroeste, como se ilustra debajo. No deje de ver los dos videos añadidos para terminar de comprender el panorama de esta fantástica batalla aeronaval. Los portaaviones Akagi, Kaga, y Soryu fueron impactados casi simultáneamente en cuestión de minutos. Es que al querer esquivar los torpedos y bombas lanzadas por el grupo aéreo desde el Noreste, como lo habían hecho toda la mañana, quedaban alineados para los ataques provenientes desde el Suroeste. No había escapatoria. Las bombas penetraron en los hangares de los portaaviones, donde los aviones japoneses estaban siendo rearmados y repostados, lo que resultó en explosiones masivas que causaron incendios incontrolables. Este ataque decisivo resultó en la destrucción de tres portaaviones japoneses en rápida sucesión.


Más tarde, ese mismo día, un cuarto portaaviones japonés, el Hiryu, lanzó un contraataque que logró dañar severamente al USS Yorktown, pero fue finalmente localizado y destruido por aviones estadounidenses. Fue el fin de la Kidō Butai, la aviación naval imperial japonesa.



2.4 Consecuencias

La pérdida de los cuatro portaaviones japoneses en Midway fue un golpe devastador para la Armada Imperial Japonesa, ya que no solo perdió buques clave, sino también pilotos experimentados y aviones. La batalla cambió el equilibrio de poder en el Pacífico, permitiendo a los Estados Unidos pasar a la ofensiva en el teatro de operaciones.

El ataque simultáneo desde diferentes direcciones durante la Batalla de Midway se considera uno de los momentos más decisivos de la Segunda Guerra Mundial, demostrando la importancia de la coordinación y la sorpresa en el combate aéreo-naval. De todos modos, debe recalcarse que esta simultaneidad fue azarosa: el grupo que atacaba desde el Sudoeste simplemente se había perdido y volvía sobre sus pasos.




3. Pesadilla en el mar

Imaginen una operación naval a mar abierto. En dicha locación existe un alto potencial de ataques aéreos con bombas (tontas o LGB) o misiles antibuque (AShM) enemigos. Sin embargo, el infierno de Midway podría emerger personalizado en nuevos misiles AShM o misiles de crucero. Las nuevas amenazas, gracias a la digitalización, pueden hasta incluir diseño de guiado con inteligencia artificial. Por lo tanto, ni siquiera un humano estaría implicado en su gestión. 

Un capitán de un buque capital moderno (como un destructor, crucero o portaaviones) enfrentado a un ataque simultáneo de múltiples de AShM desde diferentes direcciones tendría a su disposición una combinación de capacidades de defensa avanzada, obviamente imposibles de obtener en el contexto tecnológico de la Segunda Guerra Mundial. Estas capacidades están diseñadas para detectar, rastrear y neutralizar las amenazas antes de que impacten en el buque. Adentrémonos en ellas.

3.1. Detección y seguimiento

  • Radar de vigilancia de largo alcance: Un radar como el AN/SPY-1 (utilizado en el sistema Aegis) o el más moderno AN/SPY-6, proporciona una cobertura de 360 grados, permitiendo la detección y seguimiento simultáneo de múltiples amenazas desde diferentes direcciones.
  • Sistemas de sensores electro-ópticos e infrarrojos (EO/IR): Estos sistemas complementan al radar al proporcionar capacidades de detección pasiva, cruciales para identificar misiles furtivos o para operar en entornos de alta interferencia electrónica.

3.2. Contramedidas electrónicas (ECM)

  • Jammers y perturbadores electrónicos: El buque puede emplear sistemas de guerra electrónica para intentar desviar o desorientar los misiles entrantes. Esto podría incluir la emisión de señales de interferencia (jamming) para interrumpir los sistemas de guía de los misiles o el uso de señuelos electrónicos que crean falsos blancos para confundir los sistemas de radar del AShM.

3.3. Defensa antimisil de capa externa

  • Misiles antiaéreos de largo alcance: Misiles como el SM-6 (Standard Missile 6) en un sistema Aegis pueden ser lanzados para interceptar los misiles antibuque a larga distancia. Estos misiles tienen la capacidad de maniobrar a gran velocidad y de interceptar misiles entrantes incluso a altas velocidades (como los misiles supersónicos o hipersónicos).
  • Sistemas integrados de defensa en red: En un grupo de combate, como un grupo de ataque de portaaviones (CSG), otros buques también pueden contribuir a la defensa, lanzando misiles interceptores desde diferentes posiciones para aumentar la probabilidad de interceptación.


3.4. Defensa de capa media

  • Misiles de defensa de punto o corta distancia: Misiles como el RIM-162 ESSM (Evolved Sea Sparrow Missile) se encargan de la defensa en un rango medio, interceptando misiles que logran penetrar las defensas de largo alcance.
  • Cañones CIWS (Close-In Weapon Systems): Sistemas como el Phalanx CIWS o el Goalkeeper, que son cañones de alta cadencia de disparo, proporcionan la última línea de defensa, disparando ráfagas rápidas de proyectiles para destruir misiles entrantes a muy corta distancia.

3.5. Contramedidas activas

  • Señuelos lanzables (chaff y flare): El buque puede lanzar señuelos físicos como chaff (que dispersa tiras de metal para confundir el radar del misil) y flares (que emiten calor para desviar misiles guiados por infrarrojos).
  • Decoys Remolcados: Dispositivos como el Nulka, un señuelo activo lanzado que imita la firma radar del buque, pueden ser desplegados para atraer misiles lejos del barco real.

3.6. Maniobras evasivas

  • Maniobras de alta velocidad: Aunque limitado por las capacidades físicas del buque, el capitán podría ordenar maniobras evasivas para intentar evitar que los misiles logren un impacto directo, especialmente en caso de que los misiles se acerquen desde diferentes ángulos.

3.7. Coordinación con la flota

  • Defensa coordinada de grupo de combate: En un escenario de combate real, el buque capital estaría operando como parte de un grupo de combate, con otros buques y aeronaves de apoyo que proporcionarían una capa adicional de defensa. Por ejemplo, destructores o fragatas pueden actuar como piquetes de radar para interceptar misiles antes de que lleguen al buque capital.
Estas condiciones no están ampliamente difundidas entre todas las armadas del Mundo. Estos equipos se encuentran disponibles son en las armadas más modernas, incluso sólo en el US Navy, la cual es la mayor armada del Mundo. Es decir, un combatiente de superficie promedio en el Mundo quedaría sin poder emplear alguna de esas "capas" siendo altamente probable un impacto de un AShM sobre su estructura sin que mucho se pueda hacer.

3.8 Resumen hasta aquí

El capitán de un buque capital moderno tiene a su disposición una serie de capas de defensa que, cuando se utilizan de manera conjunta y efectiva, ofrecen una protección robusta contra ataques coordinados de misiles antibuque desde múltiples direcciones. La clave del éxito reside en la detección temprana, la rápida decisión para desplegar contramedidas, y la capacidad de coordinar todas estas defensas en un entorno de combate de alta intensidad. A pesar de las avanzadas defensas, un ataque masivo y bien coordinado de múltiples AShM sigue siendo una amenaza seria, subrayando la importancia de la redundancia y la preparación en la guerra moderna.



¿Cómo repeler un ataque multidireccional simultáneo? La mayoría de las veces, no puedes.

Perfiles de ataque del AShM Penguin y misil de crucero Tomahawks

Nótense la posibilidad de realizar curvas y explorar blancos para detectar y optimizar el perfil de ataque.






4. Algoritmos de ataque simultáneo

Sin embargo, la misma digitalización puede llegar a elementos de defensa mucho más pequeños, para blanco muy puntuales, en escalas también precisamente definidas. Existen sistemas avanzados de dirección de misiles y drones diseñados para coordinar ataques desde múltiples direcciones de manera simultánea, lo que incrementa las posibilidades de éxito en la misión. Este tipo de ataques coordinados se emplea especialmente en operaciones contra objetivos fuertemente defendidos, donde el objetivo es saturar o superar las defensas enemigas.

4.1 Ejemplos de tales sistemas

  1. Sistemas de enjambre (swarming):

    • Los drones pueden operar en enjambres, donde múltiples unidades trabajan de manera coordinada para atacar desde diferentes direcciones. Cada dron puede ser autónomo o controlado en red, compartiendo información en tiempo real para ajustar su ataque. El enjambre puede saturar las defensas enemigas al atacar simultáneamente desde varios ángulos. Uno puede recordar en una escena de Matrix Revolutions donde una evento así se observa. Y es sobrecogedor, por cierto.
  2. Misiles de ataque coordinado:

    • Misiles como el Tomahawk Block IV o el AGM-158 JASSM tienen capacidades avanzadas de navegación y control que les permiten realizar ataques coordinados. Estos misiles pueden ser programados para seguir diferentes trayectorias y llegar al objetivo desde varias direcciones al mismo tiempo, lo que complica la defensa.



  3. Ataques de saturación:

    • En este tipo de ataque, múltiples misiles son lanzados en un patrón diseñado para saturar las defensas enemigas. Los misiles pueden ser programados para atacar desde diferentes ángulos, alturas y velocidades, creando una situación en la que es difícil para los sistemas de defensa aérea interceptar todos los misiles entrantes.
  4. Guerra de enjambre con drones de ataque:

    • En contextos modernos, los drones kamikaze o loitering munitions (municiones merodeadoras) como el Harop o el Switchblade pueden ser desplegados en masa. Estos drones pueden ser programados para atacar simultáneamente desde múltiples direcciones, lo que aumenta la probabilidad de que al menos uno logre alcanzar el objetivo.

 




Google trabaja con drones con inteligencia artificial que permitan discernir blancos y decidir ataques


Una discusión muy técnica de cómo se pueden programar enjambres de drones y coordinarlos para ataques y otras misiones

4.2 Principio operativo

La coordinación, sincronización y redundancia al ataque se combinan para forzar casi a un resultado implacable final: el blanco será alcanzado y destruido.

  • Coordinación y sincronización: Estos sistemas dependen en gran medida de una coordinación y sincronización precisa, generalmente mediante comunicaciones avanzadas y sistemas de navegación como GPS, INS (Sistema de Navegación Inercial), o incluso tecnologías emergentes como la inteligencia artificial.
  • Redundancia de ataque: Al atacar desde diferentes ángulos y direcciones, se reduce la probabilidad de que un solo sistema de defensa sea capaz de neutralizar todas las amenazas entrantes, asegurando así que al menos uno de los misiles o drones alcance el objetivo.

Estos enfoques son fundamentales en la guerra moderna, especialmente contra adversarios que cuentan con sistemas de defensa aérea avanzados.

5. Conclusión

La capacidad para ejecutar ataques multidireccionales simultáneos, ya sea con misiles antibuque, misiles de ataque a blancos terrestres o drones, representa un avance crucial en la guerra moderna. Esta estrategia se basa en la coordinación de múltiples dispositivos de ataque que convergen sobre un mismo objetivo desde diferentes direcciones al mismo tiempo. Su importancia radica en su capacidad para desbordar las defensas enemigas, minimizar la posibilidad de interceptación y maximizar el impacto del ataque. La importancia en el campo de batalla moderno puede enumerarse así:

  1. Saturación de defensas: Un ataque desde múltiples direcciones complica significativamente la tarea de las defensas aéreas o antimisiles del adversario. Las defensas tradicionales están diseñadas para interceptar amenazas que provienen de una o pocas direcciones al mismo tiempo. Al enfrentarse a un ataque multidireccional, los sistemas defensivos pueden ser saturados, haciendo que algunas de las armas logren penetrar y alcanzar sus objetivos.

  2. Reducción de la efectividad de los contramedidas: Las contramedidas electrónicas y de defensa activa, como sistemas de interferencia o misiles interceptores, son menos eficaces cuando deben lidiar con múltiples vectores de ataque simultáneos. Esta multiplicidad obliga al enemigo a dividir sus recursos, aumentando las posibilidades de que uno o más de los vectores de ataque tengan éxito.

  3. Confusión y desorganización del enemigo: Un ataque multidireccional también puede generar confusión en las filas enemigas. La necesidad de responder a amenazas que provienen de diferentes direcciones puede desorganizar la defensa y dificultar la coordinación efectiva de la respuesta.

  4. Destrucción de blancos fuertemente defendidos: Los objetivos bien defendidos, como instalaciones militares clave, centros de comando y control, o buques de guerra, requieren ataques con alto grado de precisión y potencia. La capacidad de golpear simultáneamente desde diferentes direcciones aumenta la probabilidad de que se puedan neutralizar o destruir estos blancos. Incluso si parte de la defensa logra interceptar algunos misiles o drones, otros pueden seguir su curso y alcanzar el objetivo.

Un ejemplo claro de la efectividad de esta táctica se observó en el ataque a las instalaciones petroleras de Aramco en Arabia Saudita en 2019. En este ataque, una combinación de misiles de crucero y drones fueron lanzados desde diferentes direcciones hacia las instalaciones. Este ataque coordinado saturó las defensas antiaéreas saudíes, que no pudieron interceptar todas las amenazas, resultando en daños significativos.

Otro ejemplo es el uso de drones suicidas (también conocidos como loitering munitions) en el conflicto de Nagorno-Karabaj en 2020, donde Azerbaiyán utilizó enjambres de drones para atacar simultáneamente desde diferentes ángulos, superando las defensas armenias y destruyendo posiciones fortificadas y sistemas antiaéreos.

Un tercer ejemplo, más cercano a nosotros, lo presenta el protocolo de asalto de posiciones a trincheras argentinas por parte de infantes de marina británicos (Royal Marines). Los asaltantes se distribuían de a tres cubriendo un amplio abánico frente a la posición argentina y realizaban la corrida. Los defensores al emerger recibían fuego de múltiples direcciones, lo que los confundía y daba ventaja al atacante.

Finalmente, la capacidad de ejecutar ataques multidireccionales simultáneos, ya sea mediante misiles, drones o cualquier otra fuerza o una combinación de ellas, es una herramienta poderosa en el arsenal militar moderno. Este tipo de ataques no solo aumenta la probabilidad de éxito contra objetivos bien defendidos, sino que también representa una evolución en las tácticas de guerra que busca maximizar el impacto y minimizar la capacidad de respuesta del adversario. A medida que la tecnología avanza y los sistemas de armas se vuelven más autónomos y precisos, es probable que esta táctica se convierta en un estándar en los conflictos futuros. Imagine el lector si el Comando de Aviación Naval hubiese contado con esa capacidad en sus Exocet lo inexorable que hubiese el ataque a un blanco altamente protegidos como los portaaviones del Task Force británica en Malvinas.

domingo, 10 de noviembre de 2024

Argentina: ¿Cómo instalar una planta de producción de drones?

¿Cómo instalar una planta de drones FPV?

EMcL

 


En el contexto global actual, las fuerzas armadas de todo el mundo se enfrentan a desafíos tecnológicos y estratégicos que demandan una constante actualización y adaptación de sus capacidades. Argentina, como parte de esta dinámica, no es la excepción. En particular, el desarrollo y uso de drones FPV (First-Person View) ha emergido como una tecnología clave en los conflictos modernos, siendo el conflicto en Ucrania un ejemplo reciente y relevante. Las Fuerzas Armadas Argentinas, comprometidas con la defensa nacional y la preservación de su integridad territorial, deben considerar la incorporación de estas tecnologías en su arsenal, y para ello es fundamental la asignación de fondos en el presupuesto público destinados a la creación de una planta de ensamble y producción de drones FPV. Los drones FPV son los fusiles Máuser del soldado de infantería de hace un siglo atrás.

Lecciones del conflicto en Ucrania

El uso de drones en el conflicto entre Rusia y Ucrania ha demostrado el valor de estas herramientas no solo en tareas de reconocimiento y vigilancia, sino también en operaciones ofensivas directas. Los drones FPV, que permiten a los operadores controlar el dispositivo en tiempo real con una visión en primera persona, han sido empleados tanto por las fuerzas ucranianas como por las rusas para ataques de precisión, reconocimiento avanzado y misiones de inteligencia. Estas plataformas han probado ser relativamente económicas en comparación con otros sistemas de armas, y su capacidad para atacar con precisión a objetivos estratégicos ha transformado la forma en que se conduce la guerra moderna.

La lección clave para Argentina y otros países es que los drones FPV, dada su versatilidad, eficiencia y costo relativamente bajo, pueden convertirse en un elemento central dentro de una estrategia de defensa moderna. No se requiere de un ejército inmenso ni de recursos ilimitados para desarrollar capacidades de ataque y defensa eficientes si se aprovechan tecnologías emergentes como los drones FPV. Esto resalta la urgencia de establecer una planta de producción local, que no solo impulse la capacidad tecnológica de las fuerzas armadas argentinas, sino que también genere empleo y desarrollo en sectores clave como la electrónica y la ingeniería.

Beneficios de una planta de producción nacional

La creación de una planta de ensamble y producción de drones FPV en Argentina tiene múltiples ventajas estratégicas. En primer lugar, permitiría la reducción de la dependencia de equipos y tecnologías importadas, brindando a las fuerzas armadas una mayor autonomía para desarrollar y adaptar estas herramientas a las necesidades específicas del país. En un entorno geopolítico cada vez más incierto, la capacidad de fabricar armamento de alta tecnología a nivel local es una ventaja significativa para cualquier nación.

Además, la inversión en infraestructura para la producción de drones contribuiría al desarrollo industrial y tecnológico del país, fomentando la innovación en campos como la robótica, inteligencia artificial y sistemas de comunicación. Al posicionarse como un referente regional en la producción de estos equipos, Argentina podría incluso acceder a mercados internacionales, exportando sus tecnologías a otras naciones de la región con necesidades similares.


Justificación presupuestaria

El financiamiento de esta planta de producción debe considerarse una inversión estratégica para el futuro de la defensa nacional. Dado el costo relativamente bajo de los drones FPV en comparación con otros sistemas de armas, su producción en serie podría optimizar el presupuesto militar argentino, permitiendo a las fuerzas armadas adquirir equipos avanzados a un costo accesible. Además, una planta de ensamblaje podría adaptar las tecnologías de drones a las características del terreno y los objetivos operacionales de Argentina, lo que sería un beneficio adicional en la planificación de misiones de defensa y seguridad nacional.

La guerra en Ucrania ha demostrado que las nuevas tecnologías, como los drones FPV, son esenciales para cualquier fuerza militar moderna. Para las Fuerzas Armadas Argentinas, la creación de una planta de ensamble y producción de drones no solo mejoraría su capacidad operativa, sino que también sería un motor para el desarrollo tecnológico y económico del país. Invertir en esta infraestructura es clave para asegurar una defensa eficiente y preparada ante los desafíos del futuro. Analicemos en este informe qué significa poner una planta de ensamble o fabricación de drones en vistas de la importancia estratégica de este recurso. Lamentablemente, todo apunta a llevarnos bien con China porque la enorme mayoría de los proveedores son de ese origen.



Inversión inicial requerida para una planta de producción de drones FPV

La inversión inicial para establecer una planta de fabricación de drones FPV varía dependiendo de la escala del proyecto, el nivel de automatización, y si decides fabricar todas las piezas internamente o subcontratar algunos componentes. A continuación, se presenta un desglose general de los costos aproximados:

1. Costos de infraestructura y equipamiento

  • Alquiler o compra de espacio: Dependiendo de la ubicación y el tamaño, el costo de alquiler o compra de un espacio adecuado para una planta de producción puede variar enormemente. Para un espacio de unos 500 a 1000 m² (suficiente para producción pequeña a mediana), los costos pueden estar entre:
    • Alquiler: $3,000 a $10,000 USD por mes.
    • Compra: $200,000 a $500,000 USD (dependiendo de la ubicación).
  • Renovaciones y adaptaciones: Costos asociados con la adecuación del espacio para la producción, como la instalación de ventilación adecuada para el trabajo con fibra de carbono, estaciones de soldadura y áreas de ensamblaje.
    • Costo estimado: $20,000 a $50,000 USD.


Debe tenerse en cuenta que debido a los recortes presupuestarios en distintos bases militares y fábricas existen amplios espacios en los cuales podría montarse un planta de ensamble de drones estilo ucraniana. Estos costos, en cierto sentido, pueden ser menores. Asimismo, debiera pensarse también en una fuerte interacción con el sector privado a fin de interactuar con aparatos completamente off-the-shelf que son simplemente adecuados al uso militar (especialmente cuando se les añade una carga explosiva).

 

2. Maquinaria y herramientas

  • Máquinas CNC para cortar fibra de carbono (ver apéndice abajo): Una máquina CNC de calidad media para cortar fibra de carbono puede costar entre:
    • Costo Estimado: $10,000 a $50,000 USD por unidad, dependiendo del tamaño y precisión.
  • Impresoras 3D: Dependiendo del número de impresoras 3D que necesites para piezas personalizadas (TPU y otros materiales), una buena impresora 3D costará entre:
    • Costo Estimado: $500 a $5,000 USD por impresora (puedes necesitar varias dependiendo del volumen de producción).
  • Estaciones de soldadura: Para la soldadura de controladores de vuelo, ESCs, motores, etc.
    • Costo estimado: $100 a $500 USD por estación de soldadura. Se necesitarán varias estaciones para un flujo continuo de producción.
  • Herramientas de ensamblaje y ESD (Protección contra Descargas Electrostáticas):
    • Costo estimado: $5,000 a $10,000 USD para todo el equipo de ensamblaje (destornilladores, pinzas, multímetros, etc.) y equipo de protección ESD.
  • Equipos de pruebas y calidad: Simuladores de vuelo, bancos de pruebas para motores y drones, medidores de potencia, etc.
    • Costo estimado: $5,000 a $15,000 USD.

3. Suministros y materias primas

  • Materiales iniciales (carbono, motores, controladores de vuelo, ESC, hélices, etc.): Para una producción inicial (primer lote de drones), necesitarás un stock adecuado de materiales y componentes.
    • Costo estimado: $20,000 a $50,000 USD para adquirir suficientes piezas y materias primas para los primeros lotes de producción.

4. Costos de Personal

  • Salarios de personal técnico y operativo: Dependiendo de la ubicación, los salarios pueden variar. Para un equipo inicial de ingenieros, técnicos y personal de ensamblaje, los costos salariales pueden ser:
    • Ingenieros de diseño y electrónica: $40,000 a $70,000 USD anuales por ingeniero.
    • Técnicos de ensamblaje: $20,000 a $40,000 USD anuales por trabajador.
    • Personal de calidad/pruebas: $25,000 a $50,000 USD anuales.

5. Desarrollo de marca y marketing

  • Marketing y comercio electrónico: Para crear una marca en el mercado FPV, es fundamental invertir en campañas de marketing digital, desarrollo de sitio web y presencia en redes sociales.
    • Costo estimado: $10,000 a $30,000 USD para campañas iniciales, desarrollo de tienda online y publicidad en redes sociales.

6. Licencias, certificaciones y cumplimiento

  • Certificaciones de seguridad y cumplimiento: Dependiendo del país, es posible que necesites certificaciones de seguridad (FCC, CE, RoHS) para los componentes electrónicos y los drones completos.
    • Costo estimado: $5,000 a $20,000 USD, dependiendo de la cantidad de certificaciones requeridas.
  • Permisos y licencias: Registros, permisos de operación, y otros requisitos locales.
    • Costo Estimado: $2,000 a $5,000 USD.

Resumen de inversión estimada

A continuación, se muestra un resumen de los costos aproximados para la inversión inicial:



Tiempo necesario para comenzar la producción

El tiempo requerido para comenzar la producción depende de varios factores, como la contratación de personal, la adquisición de maquinaria, y la adaptación del espacio de producción. Un cronograma típico puede verse así:

1. Diseño y planificación (1-3 meses)

  • Finalización de diseños de drones y planes de producción.
  • Investigación y adquisición de proveedores de materiales y componentes.
  • Cumplimiento con las normativas locales y obtención de licencias.

2. Instalación de maquinaria y configuración (2-4 meses)m

  • Compra e instalación de máquinas CNC, impresoras 3D y herramientas de ensamblaje.
  • Instalación de estaciones de trabajo y equipos de pruebas.
  • Configuración del sistema de inventario y gestión de producción.

3. Contratación y capacitación (1-3 meses)

  • Contratación de ingenieros, técnicos de ensamblaje y personal de calidad.
  • Capacitación de los empleados en el uso de maquinaria y procesos de fabricación.

4. Prototipado y pruebas (1-2 meses)

  • Prototipado de los primeros drones y pruebas de calidad.
  • Ajustes en los procesos de producción según los resultados de las pruebas.

5. Producción Inicial (1-2 meses)

  • Comienzo de la producción a pequeña escala para asegurar que todos los procesos estén funcionando correctamente.
  • Verificación final de calidad y embalaje para el lanzamiento al mercado.

Cronograma estimado total: 6 a 12 meses

Este período incluye la fase de planificación, instalación, contratación y la producción inicial. Con una buena gestión, puedes estar listo para comenzar la producción en aproximadamente 6 meses, aunque esto puede variar según la complejidad del proyecto y la rapidez con que se adquieran las herramientas y el personal.


¿Cómo producir drones FPV?

1. Descripción básica para establecer una planta de producción de drones FPV

  • Planificación y diseño: Define el alcance de la producción de drones FPV: ¿qué tipos de drones fabricarás (drones de carreras, drones de freestyle, cinewhoops, drones de largo alcance)? Considera qué partes serán subcontratadas y cuáles se fabricarán internamente.
  • Diseño del producto y prototipado: Desarrolla o adquiere archivos de diseño para los marcos, la electrónica (controladores de vuelo, ESC, etc.), y otros componentes. Comienza con modelos CAD y prototipa varias iteraciones para asegurar el rendimiento.
  • Investigación de mercado y cumplimiento: Investiga tu mercado objetivo (aficionados, profesionales, creadores de contenido) y asegúrate de cumplir con las regulaciones locales e internacionales de aviación y fabricación electrónica, como las certificaciones de la FCC (Comisión Federal de Comunicaciones) o CE.

2. Proveedores clave y suministradores

Necesitarás identificar proveedores para varios componentes y servicios en la fabricación de drones FPV:

Componentes principales

  • Marcos: Los marcos generalmente están hechos de fibra de carbono. Busca proveedores especializados en corte preciso de fibra de carbono.

  • Motores: Los motores deben ser adquiridos de fabricantes confiables que ofrezcan motores sin escobillas de alta calidad.

  • Controladores de vuelo (FCs) y ESCs: El “cerebro” electrónico y los controladores de velocidad del dron deben ser fiables y con muchas funciones.

  • Sistemas FPV (cámaras, VTX y antenas): El sistema FPV incluye la cámara, el transmisor de video y las antenas.

Baterías y sistemas de energía

  • Baterías LiPo: Conseguir baterías de polímero de litio (LiPo) de alta calidad es esencial para una entrega de energía constante.

  • Cargadores: También necesitarás un proveedor para cargadores de baterías de alto rendimiento y tableros de balanceo.

Otros materiales clave y accesorios

  • Hélices: Fuente de hélices duraderas y equilibradas.

  • Hardware: Necesitarás pequeñas piezas como tornillos, tuercas, pernos, separadores y amortiguadores de vibración.

  • Componentes impresos en 3D: Para piezas personalizadas, necesitarás una configuración de impresión 3D o un proveedor externo para plásticos flexibles como TPU.

 


3. Requisitos de personal

El personal necesario variará según la escala de la operación y la cantidad de automatización. A continuación, algunos de los roles esenciales para una planta de fabricación de drones FPV:

Personal técnico y de ingeniería

  • Ingenieros de diseño: Responsables de crear y probar diseños de drones utilizando software CAD y trabajar en estrecha colaboración con producción para optimizar diseños para la fabricación.
  • Ingenieros mecánicos: Se centran en la selección de materiales, diseño de marcos y aseguramiento de la durabilidad.
  • Ingenieros eléctricos: Diseñan e integran controladores de vuelo, ESC, placas de distribución de energía (PDB) y garantizan que todos los componentes electrónicos funcionen eficientemente.
  • Técnicos de control de calidad/pruebas: Especialistas en probar cada dron para el rendimiento, durabilidad y fiabilidad antes de su envío.

Trabajadores de fabricación y ensamblaje

  • Técnicos de fabricación de marcos: Con habilidades para operar máquinas CNC para corte de fibra de carbono, o gestionar operaciones de impresión 3D.
  • Técnicos de ensamblaje: Personal capacitado para ensamblar drones, soldar componentes electrónicos, instalar motores e integrar sistemas FPV.
  • Personal de embalaje y envío: Responsables de empaquetar de forma segura los productos terminados y gestionar la logística.

Personal de soporte

  • Especialistas en compras: Encargados de adquirir materiales, negociar con proveedores y mantener las cadenas de suministro.
  • Gerentes de logística y almacén: Manejan la coordinación de envíos, inventario y gestión de la cadena de suministro.
  • Equipo de marketing y ventas: Ayuda a desarrollar la presencia de la marca en el mercado FPV, gestiona las ventas directas al consumidor y supervisa el servicio al cliente.

4. Equipo y herramientas

  • Máquinas CNC: Para cortar fibra de carbono, aluminio u otros materiales utilizados en los marcos.
  • Impresoras 3D: Para piezas personalizadas como soportes para cámaras u otros componentes flexibles.
  • Estaciones de soldadura: Para ensamblar manualmente componentes electrónicos como motores, controladores de vuelo y VTX.
  • Herramientas de línea de ensamblaje: Destornilladores de precisión, llaves, alicates y multímetros para el control de calidad.
  • Protección ESD: Equipo antiestático para proteger los componentes electrónicos sensibles de las descargas electrostáticas.

5. Flujo de trabajo de fabricación

  • Fase de diseño: Los ingenieros diseñan el dron en software CAD, simulan pruebas de esfuerzo e imprimen prototipos con impresoras 3D.
  • Abastecimiento de componentes: Identifica proveedores confiables y desarrolla asociaciones para asegurar un flujo constante de partes esenciales.
  • Producción de marcos: Utiliza máquinas CNC para cortar las piezas de fibra de carbono para los marcos.
  • Montaje electrónico: Instalación y soldadura del FC, los ESC, los motores y el cableado. Prueba cada unidad para asegurar la calidad.
  • Integración del sistema FPV: Instalación de la cámara FPV, el VTX y las antenas, asegurando la compatibilidad con diferentes gafas y receptores.
  • Pruebas finales: Realiza pruebas de vuelo y de resistencia para asegurar la durabilidad y el rendimiento.
  • Control de calidad y empaque: Inspecciona el producto final en busca de defectos, empaquétalo de manera segura y organiza el envío.

6. Cumplimiento y certificaciones

  • Normas de seguridad: Cumple con las normas de seguridad locales e internacionales como CE (Europa) o FCC (EE. UU.).
  • Cumplimiento ambiental: Asegúrate de que tus procesos de producción cumplan con las regulaciones ambientales, especialmente en lo que respecta al polvo de fibra de carbono y la eliminación de desechos electrónicos.
  • Regulaciones de drones: Asegúrate de que los drones cumplan con las regulaciones de las autoridades de aviación, como la FAA en Estados Unidos o EASA en Europa, particularmente en cuanto a límites de peso y transmisión FPV.

7. Costos estimados

  • Costos de Instalación Inicial:

    • Espacio de fábrica: Alquilar o comprar un almacén para fabricación y ensamblaje, generalmente con techos altos y buena ventilación para la producción de fibra de carbono.
    • Máquinas CNC e Impresoras 3D: Entre $50,000 y $200,000 dependiendo del número y tamaño de las máquinas.
    • Estaciones de soldadura, herramientas y consumibles: Aproximadamente $10,000 a $20,000.
    • Seguro de responsabilidad: Seguro de fabricación para cubrir a los trabajadores y productos.
  • Costos continuos:

    • Adquisición de materiales: Fibra de carbono, motores, componentes electrónicos y accesorios.
    • Costos laborales: Salarios para el personal técnico, los trabajadores de ensamblaje y el personal de soporte.
    • Investigación y desarrollo: Mejoras continuas del producto y desarrollo de nuevos modelos.

8. Consideraciones clave para el sector civil

  • Escalabilidad: Se comienza a pequeña escala produciendo solo algunos tipos de drones y se expande gradualmente a diferentes categorías (por ejemplo, carreras, cinewhoop, largo alcance).
  • Asociaciones: Forma asociaciones estratégicas con comunidades FPV, influencers y minoristas como GetFPV o RaceDayQuads.
  • Marketing y distribución: Ten una sólida presencia en línea y una estrategia de comercio electrónico directo al consumidor. Usa las redes sociales, YouTube y foros FPV para aumentar la conciencia de marca.







Apéndice: ¿Qué es un máquina CNC?

Una máquina CNC (Control Numérico por Computadora, por sus siglas en inglés) es un tipo de máquina herramienta que opera bajo el control de una computadora. CNC permite automatizar el proceso de fabricación mediante instrucciones programadas que controlan los movimientos de la máquina para cortar, esculpir o modificar materiales como metal, madera, plásticos o, en el caso de drones FPV, fibra de carbono.

Características Clave de las Máquinas CNC

  • Control Computarizado: Las máquinas CNC ejecutan instrucciones preprogramadas a través de un software, que le indica a la máquina cómo y dónde cortar o esculpir el material.
  • Alta Precisión: Gracias al control computarizado, las máquinas CNC son extremadamente precisas y pueden repetir procesos con consistencia, algo esencial en la fabricación de piezas complejas como marcos de drones.
  • Versatilidad: Estas máquinas pueden trabajar con una amplia gama de materiales, incluidos metales, madera, plásticos y fibra de carbono, que es clave en la fabricación de drones FPV por su ligereza y resistencia.
  • Automatización: Una vez que se configura el programa de fabricación, la máquina puede operar de manera autónoma con supervisión mínima, lo que reduce la necesidad de intervención manual y el error humano.


Aplicaciones en la Producción de Drones FPV

En la fabricación de drones FPV, las máquinas CNC se utilizan principalmente para:

  • Corte de Fibra de Carbono: La fibra de carbono se utiliza para los marcos de los drones debido a su alta relación resistencia-peso. Las máquinas CNC cortan las láminas de fibra de carbono con gran precisión para formar los brazos y las placas de los drones.
  • Producción de Piezas Metálicas o Plásticas: Además de la fibra de carbono, las CNC pueden fabricar piezas adicionales que requieran materiales metálicos (soportes, tornillos) o plásticos (partes no estructurales).

Tipos Comunes de Máquinas CNC

  • Fresadoras CNC: Utilizan fresas (herramientas de corte giratorias) para remover material y dar forma a la pieza, muy usadas para trabajar metales o plásticos.
  • Cortadoras CNC por Láser o Agua: Utilizan un láser o un chorro de agua de alta presión para cortar materiales como la fibra de carbono o metales finos.
  • Tornos CNC: Se usan para piezas que necesitan ser torneadas o trabajadas en formas cilíndricas o esféricas.

Ventajas de las Máquinas CNC

  • Precisión: La capacidad de hacer cortes y movimientos extremadamente precisos es una ventaja clave, especialmente en la fabricación de componentes delicados y detallados como los marcos de drones FPV.
  • Eficiencia: Permite producir grandes cantidades de piezas de forma eficiente y rápida, mejorando el rendimiento de la planta de producción.
  • Repetitividad: Puede hacer exactamente el mismo proceso una y otra vez, asegurando consistencia en todas las piezas fabricadas.

Ejemplos de Máquinas CNC para Fabricación de Drones

  • Shapeoko CNC: Popular entre fabricantes pequeños y medianos por su capacidad de trabajar con precisión en diversos materiales.
  • Tormach CNC: Conocida por ofrecer máquinas CNC de alta precisión para pequeños talleres de fabricación.

En resumen, una máquina CNC es esencial en la fabricación de drones FPV debido a su capacidad para crear piezas de alta precisión y durabilidad a partir de materiales como la fibra de carbono.