Mostrando entradas con la etiqueta producción de aviones. Mostrar todas las entradas
Mostrando entradas con la etiqueta producción de aviones. Mostrar todas las entradas

viernes, 9 de enero de 2026

Indonesia: Revisión del programa aeronáutico nacional

Revisión del programa de adquisición de aviones de combate de Indonesia para 2026


La versión monoplaza del caza Rafale para Indonesia tiene la matrícula T-0317 (foto: Swiderek Maciejka)

Aunque el Ministerio de Planificación del Desarrollo Nacional/Bappenas aprobó la Lista del Plan de Préstamos Externos a Mediano Plazo 2025-2029 (DRPLN-JM) para el Ministerio de Defensa por un monto de US$28 mil millones, todavía hay misterio en cuanto al plan de gastos del gobierno.

Esto se debe a que los sistemas de armas que se adquirirán en el Libro Azul siguen siendo opcionales, y la decisión final sobre cuál de las diversas opciones importar recae en quien toma la decisión. La disponibilidad de varias opciones hace que el documento se asemeje más a un Plan de Requisitos presentado por el Ministerio de Defensa que al propio DRPLN-JM.

El cupo de gasto de US$28 mil millones probablemente también sea temporal, dada la tendencia de la administración actual a cambiar los planes de gasto a mitad de camino. De la asignación de US$28 mil millones, no está claro exactamente qué parte del gasto se destinará a la Fuerza Aérea Indonesia, ya que el DPRPLN-JM 2025-2029 parece tratarse como secreto de Estado.

De hecho, la fuente de financiación de estas actividades provendrá de préstamos de instituciones financieras extranjeras, además de que los fabricantes extranjeros que recibieron los contratos nunca mantuvieron en secreto los pedidos de Indonesia.

Valor del préstamo extranjero
Además, el Ministerio de Finanzas publica periódicamente informes sobre los retiros de Préstamos Extranjeros (PLN), que detallan el monto de la deuda retirada, el prestamista y el ministerio que utiliza el préstamo. Según tres Libros Azules publicados por el Ministerio de Planificación Nacional del Desarrollo/Bappenas entre 2010 y 2020, la Fuerza Aérea Indonesia recibió sistemáticamente la mayor asignación de PLN en comparación con las otras dos ramas.

Teniendo en cuenta que actualmente se desconoce cuánto ha asignado la PLN a la Fuerza Aérea de Indonesia, tampoco está claro cuánta deuda se gastará en la adquisición de aviones de combate en el período 2025-2029.

En el período anterior, la cuota total de la PLN para la adquisición de aviones de combate, incluyendo aviones de entrenamiento, fue de 11.200 millones de dólares. De esta cifra, 8.400 millones se habían invertido en contratos con Dassault Aviation y Korea Aerospace Industries (KAI), mientras que los 2.800 millones restantes quedaron sin gastar.

Modelo del avión Rafale para Indonesia en Indo Defense 2025 (foto: Defense Studies)

La asignación de 2.800 millones de dólares de la PLN estaba destinada a financiar un programa de adquisiciones controvertido y mal planificado, a saber, la importación de 12 J-10B+ usados ​​de China y la adquisición de un prototipo de avión de Turquía que se decía que era de quinta generación pero que no tenía ningún sistema de propulsión.

Considerando la dinámica desde la segunda mitad de 2025 hasta principios de 2026, existe una fuerte tendencia a que el Ministerio de Defensa continuará modernizando la fuerza aérea de Indonesia, particularmente los aviones de combate.

La pregunta es: ¿qué país tiene más posibilidades de adquirir aviones de combate en el período 2025-2029? ¿Serán fabricados por Estados Unidos, Francia, Corea del Sur o Rusia? El plan de adquirir aviones de combate de fabricación rusa ya no puede ignorarse, ya que Indonesia ha demostrado no temer la amenaza de las sanciones de la CAATSA, como lo demuestra la activación del contrato de adquisición de 11 Su-35 en 2025.

Adiciones al Rafale y adquisición del KF-21
Respecto a la pregunta de qué aviones de combate comprará Indonesia en 2026 o entre 2026 y 2029, la respuesta a esta pregunta se refiere a los parámetros de desarrollo ocurridos desde el segundo semestre de 2025 hasta los primeros cuatro días de 2026.

En primer lugar, la adquisición continua de cazas Rafale, como parte de la Carta de Intención firmada el 28 de mayo de 2025. El Ministerio de Defensa adquirirá al menos 18 de estos cazas de doble propulsión, tras haber adjudicado previamente un contrato para la adquisición de 42 Rafale a Dassault Aviation. Es probable que se aclare la adquisición de los cazas Rafale adicionales en los primeros 31 días de este año, salvo que se produzcan novedades.

En segundo lugar, la adquisición del KF-21 como continuación de la primera fase de Ingeniería, Fabricación y Desarrollo (EMD). El KF-21 que Indonesia adquirirá es del Bloque 2, con capacidades de ataque aire-tierra y aire-aire.

Indonesia y Corea del Sur están tomando varias medidas para asegurar el caza bimotor, tanto bilateral como unilateralmente. Si todo marcha bien, el contrato de adquisición del KF-21 Bloque 2 podría firmarse este año, lo que permitiría la entrega del primer avión en 2028, antes de las elecciones de 2029.

Modelo del avión KF-21 para Indonesia en Indo Defense 2025 (foto: Defense Studies)

En términos de costos, se estima que la adquisición prevista del Rafale y el KF-21 requerirá a la PLN (Compañía Estatal de Electricidad) entre 5.000 y 6.000 millones de dólares, incluyendo apoyo logístico, entrenamiento y adquisición de armamento. Esta estimación también supone que Indonesia adquirirá aproximadamente un escuadrón de aviones de combate de cada tipo. 

El apoyo logístico y los factores relacionados con la compra de misiles y bombas son factores importantes a tener en cuenta basándose en la experiencia de Indonesia en la adquisición de 42 Rafales, que puso demasiado énfasis en las aeronaves.

Por otra parte, Indonesia no puede confiar enteramente en el período de garantía proporcionado por el fabricante, porque ese período tiene una cláusula de "xxx horas de vuelo o dos años calendario", donde una de las cláusulas que se alcance primero hará que finalice el período de garantía.

Técnicamente, la firma o no de un contrato para la compra del Rafale y el KF-21 en Indonesia en 2026 depende en gran medida de las decisiones políticas de los responsables. Burocráticamente, la firma del contrato puede tener lugar después de que el Ministro de Finanzas emita una Determinación de la Fuente de Financiación (PSP), que puede emitirse después de que el Ministerio de Planificación Nacional del Desarrollo/Bappenas formule la Lista de Planes Prioritarios de Préstamos Extranjeros y la Lista de Actividades Especiales.
Sin embargo, dado el historial de los últimos años, el Ministerio de Defensa podría firmar contratos de adquisición incluso sin el apoyo del PSP. Por otro lado, ejecutivos de fabricantes como Dassault Aviation y KAI ya conocen bien el proceso de adquisición de sistemas de armas en Indonesia, por lo que probablemente se negarán a firmar contratos que no cuenten con la aprobación financiera del Ministro de Finanzas.

Otros tipos de aviones de combate
Además del Rafale y el KAI, ¿se planea adquirir otros cazas entre 2026 y 2029? Solo quienes toman las decisiones pueden responder a esta pregunta, dado que la planificación exhaustiva ya no forma parte de la adquisición de sistemas de armas. Esta situación coloca a la Fuerza Aérea Indonesia en una situación difícil, ya que debe preparar todo lo relacionado con la operación de nuevos cazas.

Mientras tanto, desde algunos sectores han surgido críticas que señalan que los esfuerzos de diversificación de los aviones de combate de Indonesia han ido demasiado lejos, sobre todo porque la diversificación suele interpretarse como "siempre y cuando no se fabrique en Estados Unidos" e ignora la realidad de la cadena de suministro global en el mercado de cazas actual y futuro. (Alman Helvas Ali)

( CNBC )

domingo, 16 de noviembre de 2025

Argentina: Visita a la fábrica de helicópteros Cicaré

Visita de alumnos y docentes a la fábrica de helicópteros de Cicaré en Saladillo




VISITA DE DIRECTIVOS, PROFESORES Y ALUMNOS DEL COLEGIO TÉCNICO JORGE NEWBERY DE VILLA LUZURIAGA, A LA FÁBRICA DE HELICÓPTEROS CICARÉ, DE SALADILLO
Fuente: Vuelo Vertical.




Hoy tuvimos el gran placer de acompañar a un grupo de directivos, profesores y alumnos del colegio técnico Jorge Newbery de Villa Luzuriaga, a realizar una visita a la fábrica de helicópteros Cicaré, ubicada en la localidad bonaerense de Saladillo.



Fundada por el recordado Augusto Cicaré, pudimos realizar un recorrido de las instalaciones guiados muy amablemente por Alfonso Cicaré, directivo de la empresa e hijo de Augusto Cicaré, quien nos mostró con gran detalle el museo en el quedé preservan toda las aeronaves experimentales diseñadas por Augusto Cicaré y nos dió detalles de las actividades de la empresa. Actualmente, Cicaré exporta sus productos a varios países del mundo, incluyendo Estados Unidos, Alemania, Francia, Turquía y Australia, entre otros. 
Por su parte, los directivos del colegio expusieron los proyectos de la institución entre los cuales se encuentra la puesta en servicio de un simulador Cicaré SVH-3 recibido el año pasado.



Una experiencia altamente positiva y emotiva al recorrer los lugares donde creaba sus proyectos el gran genio argentino Augusto Cicaré.



domingo, 28 de septiembre de 2025

Argentina: El accidente que condenó al Pulqui



El día que el Pulqui se convirtió en Pulquiría





El 31 de mayo de 1951 marcó el punto de inflexión definitivo para el IA-33 Pulqui II. En lugar de apostar decididamente por su desarrollo y producción en serie, el gobierno peronista optó por relegarlo a la categoría de demostrador tecnológico, desarticulando con ello las posibilidades reales de que Argentina se posicionara a la vanguardia de la aviación militar global. Esta decisión, atribuible en última instancia a la voluntad del presidente Juan Domingo Perón, resultó determinante en el fracaso del proyecto.

Ese día, durante un vuelo de prueba a bordo del segundo prototipo, el capitán Vedania Adriel Mannuwal falleció al intentar eyectarse del aparato. La catástrofe evidenció fallas estructurales graves: un ala se desprendió en pleno vuelo por una soldadura deficiente, y el sistema de eyección falló debido a su complejidad técnica. Pero más allá del accidente en sí, lo alarmante fue que el aparato aún no estaba homologado y se lo estaba utilizando de manera irresponsable en maniobras de adiestramiento de pilotos, exponiéndolos a riesgos inaceptables.



El Pulqui II fue fruto de una coyuntura histórica excepcional. Argentina, al finalizar la Segunda Guerra Mundial, se encontraba entre las pocas naciones con acceso a tecnología de propulsión a chorro. Esta situación fue facilitada, paradójicamente, por su relación con el Reino Unido, que le proveyó motores y repuestos militares sin restricciones. El Instituto Aerotécnico —posteriormente Fábrica Militar de Aviones— ya tenía experiencia en diseño y producción, pero nunca alcanzó una escala industrial significativa. Los modelos IAe-22 y Calquín, diseñados antes del peronismo, son prueba de ello.



Con la llegada del ingeniero alemán Kurt Tank a Argentina, se buscó aprovechar su experiencia en diseño avanzado. Su colaboración con el equipo local produjo el Pulqui II, un caza con alas en flecha, motor Rolls Royce Nene II, y una velocidad máxima en torno a los 1.080 km/h. Aunque en sus inicios el avión no estaba muy lejos del F-86 Sabre o el MiG-15 en términos de rendimiento, nunca pasó del estado de prototipo. Mientras sus contrapartes ya estaban en producción masiva y en operación activa, el Pulqui II apenas lograba acumular horas de vuelo entre constantes rediseños y accidentes.



El programa sufrió múltiples tropiezos técnicos: desprendimientos estructurales, fallos en el tren de aterrizaje, problemas de estabilidad y falta de potencia de la turbina. Estos no eran insalvables, pero requerían inversión sostenida, personal altamente capacitado y decisión política. Lo cierto es que ninguno de estos tres factores estuvo presente en la medida necesaria.



En el período clave entre 1950 y 1953, el gobierno peronista no proporcionó el respaldo financiero ni organizativo que hubiese permitido avanzar hacia una producción industrial. La tragedia del capitán Mannuwal, seguida por la muerte del piloto alemán Otto Bherens en 1952, no fueron advertencias técnicas, sino consecuencias previsibles de una política que priorizaba el simbolismo por encima de la operatividad. Aún más grave fue la utilización del prototipo en entrenamientos de combate, sin homologación ni preparación adecuada, un acto negligente que tuvo consecuencias mortales.



En 1953 voló finalmente un cuarto prototipo con varias mejoras —cabina presurizada, cañones instalados—, pero ya era tarde. Las grandes potencias estaban entrando en la era del vuelo supersónico. Mientras se desarrollaban modelos como el F-100 Super Sabre o el MiG-19, en Argentina apenas se aspiraba a fabricar una docena de aviones subsonicos de tecnología ya obsoleta.



Cuando se produjo el golpe de 1955, el Pulqui II seguía sin estar homologado. Solo un aparato estaba en condiciones mínimas de vuelo, y el proyecto estaba lejos de concretarse. Aunque un grupo reducido de técnicos intentó mantenerlo vivo, incluso realizando vuelos de larga distancia armados con municiones reales, el retraso tecnológico ya era irrecuperable. Los problemas de oxigenación que casi causan la muerte al capitán Rogelio Balado en uno de estos vuelos solo refuerzan esta conclusión: el aparato no estaba listo y el país ya no tenía margen para esperar.



En 1956, el brigadier Ahrens confirmó lo inevitable: solo había material para construir un puñado de unidades. A pesar de que se propuso fabricar 100 ejemplares, la infraestructura heredada del peronismo apenas permitía armar una docena en cinco años. Frente a ello, la oferta de cazas F-86 Sabre usados, disponibles de inmediato y a bajo costo, resultó una solución racional y pragmática.



La Fuerza Aérea finalmente recibió 28 F-86F, que lograron cumplir con los requerimientos operativos en un contexto regional cada vez más exigente. Por el contrario, el Pulqui II quedó como un testimonio estático en el hangar de pruebas. Su último vuelo fue hacia 1961. A esa altura, era un artefacto de museo que no respondía a ninguna necesidad real de la defensa nacional.



Cualquier intento de justificar el fracaso del Pulqui II por el golpe militar de 1955 ignora lo esencial: cuando la decisión de apostar por su desarrollo era crítica —entre 1950 y 1953—, el gobierno peronista no actuó. El proyecto se dejó avanzar a media marcha, mal coordinado, mal financiado y usado de forma propagandística. La responsabilidad por su estancamiento no recae en una revolución posterior, sino en la decisión política inicial de no convertirlo en una prioridad nacional real. Fue allí, en 1951, cuando se firmó su sentencia de muerte. Los pilotos terminarían nombrando internamente al avión como Pulquiría, por su pobre perfomance y riesgos asociados a su pilotaje.



Hoy, el Pulqui I y el Pulqui II están restaurados y preservados en el Museo Nacional de Aeronáutica en Morón. Son testimonios silenciosos de una posibilidad frustrada. Pero también representan una lección clara: la tecnología de punta exige más que intenciones; requiere decisión, coherencia y responsabilidad. Nada de eso estuvo presente cuando más se necesitaba.


viernes, 12 de septiembre de 2025

Argentina: FADEA amplía sus operaciones para no echar personal


La fábrica de aviones de Córdoba busca frenar despidos y teje alianzas con socios locales e internacionales





https://www.iprofesional.com/Fuente-imagen

  • FADEA abrochó acuerdos con la brasileña Akaer y la alemana Deutsche Aircraft, además de entendimientos con las locales Hangar Uno y Alta Aviación.


Por Patricio Eleisegui 


En plena labor para reducir su rojo operativo, y enfocada en preservar alrededor de 700 puestos de trabajo, la cúpula de FADEA, la fábrica de aviones de Córdoba, sigue abrochando acuerdos en, también, un intento desesperado por eludir cualquier intento de privatización. La compañía en cuestión, muy cerca de pasar a operar bajo control del Gobierno de Córdoba, venía de cerrar un acuerdo con la mexicana Trans Ce Cargo (TCC) para brindar soporte técnico a distintas aeronaves civiles y militares operativas en el país norteamericano y brindar asistencia a la «low cost» Flybondi. Ahora, activó un proyecto en alianza con la brasileña Akaer y la alemana Deutsche Aircraft. Además, firmó un acuerdo estratégico con las empresas nacionales Hangar Uno y Alta Aviación SRL.



Según indicó la compañía estatal, la apuesta para sostener su funcionamiento consiste en diversificar su cartera de clientes y, ligado a esto, consolidar nuevos negocios en el sector privado más allá de la histórica vinculación de FADEA con las fuerzas armadas.

«En este camino, firmó un acuerdo estratégico con las empresas Hangar Uno y Alta Aviación SRL, ambas con amplia experiencia en el sector aeronáutico regional», informó la empresa.

«La alianza permitirá desarrollar nuevos servicios de mantenimiento (MRO) para aeronaves ejecutivas y helicópteros, y trabajar en conjunto en la gestión de oportunidades dentro de la aviación general», agregó.

La fábrica de aviones cierra más acuerdos estratégicos

Hangar Uno ostenta una presencia por demás consolidada en el segmento de los vuelos ejecutivos y los servicios de chárter aéreo. Por su parte, Alta Aviación SRL brinda soporte técnico a aeronaves de pequeño porte y cuenta con licencia para proveer de mantenimiento a las firmas Robinson Helicopters y Bell.

A la par de estos acuerdos, la fábrica de aviones notificó a mediados de este mes que puso en marcha una línea de ensamblaje del fuselaje delantero del turbohélice bimotor D328eco.

La labor en cuestión emerge a partir de un acuerdo con Akaer, firma brasileña con presencia en el ámbito aeroespacial y de defensa, y Deutsche Aircraft, fabricante alemán de peso en el mercado de la aviación sustentable.

«Este hito marca el paso del D328eco de la fase de desarrollo a la industrialización, y pone en marcha la alianza que nos convierte en proveedores de piezas, partes y servicios para este proyecto internacional, con un horizonte de trabajo que se proyecta por muchos años», afirmó FADEA.


«El D328eco es un turbohélice de última generación, con capacidad para hasta 40 pasajeros, diseñado para maximizar rendimiento, versatilidad y sostenibilidad», añadió.

El D328eco es un avión turbohélice regional de nueva generación desarrollado por Deutsche Aircraft, basado en el Dornier 328 original, que busca ofrecer una aviación regional más sostenible y eficiente. Este avión está diseñado para operar con un 100% de Combustible Sostenible de Aviación (SAF), reduciendo significativamente la huella de carbono. Además de su eficiencia y sostenibilidad, el D328eco es un avión versátil, con capacidad para misiones comerciales, de carga, y operaciones especiales como inteligencia, vigilancia y reconocimiento (ISR), y respuesta a emergencias. 
Características principales:
Sostenibilidad:
Diseñado para operar con 100% SAF, lo que reduce hasta un 95% las emisiones de CO2. 
Versatilidad:
Puede configurarse para diversas misiones, incluyendo transporte de pasajeros, misiones de búsqueda y rescate, o funciones militares. 
Rendimiento:
Mantiene el rendimiento del Dornier 328 pero con una aerodinámica y sistemas de propulsión modernizados, ofreciendo mayor potencia, capacidad de carga y eficiencia. 
Capacidad Operativa:
Es capaz de operar en pistas cortas y no pavimentadas, en condiciones climáticas adversas, lo que amplía el acceso a regiones con infraestructura limitada. 
Diseño:
Es una evolución del Dornier 328, no un diseño completamente nuevo. 
Línea de ensamblaje:
La línea de montaje final se encuentra en el aeropuerto de Leipzig/Halle en Alemania. 



FADEA mantiene su régimen de suspensiones

A la par de estas iniciativas comerciales y operativas, FADEA mantiene activo un cronograma de suspensiones rotativas y pago acotado de los sueldos.

La medida en cuestión, con alcance a unos 720 operarios, se extenderá al menos hasta octubre. Asimismo, dicho esquema habilita a la firma para que convoque a los trabajadores suspendidos a retomar sus tareas con un preaviso de 72 horas. Esto, en caso de necesidad extraordinaria o trabajos atrasados.

Las suspensiones en cuestión, que comenzaron en junio, se alinean con el Plan Preventivo de Crisis (PPC) habilitado por la Secretaría de Trabajo de la provincia de Córdoba previo pacto establecido entre la cúpula de la estatal y las principales organizaciones que operan dentro de la firma.

La intención de la directiva de la fábrica de aviones es obtener luz verde para mantenerse sin cambios en su plantel de empleados una vez que concluya el cronograma de suspensiones que rige en la actualidad.

Claro que no cúpula de la firma no la tendrá fácil: el oficialismo nacional estima en u$s2.000 millones el déficit de FADEA, y que a los ojos de La Libertad Avanza (LLA) la fábrica de aviones de Córdoba insume un gasto operativo que se acerca a los $4 millones por hora.

viernes, 29 de agosto de 2025

Sudáfrica: Demandan a Denel en quiebra por fallas en la provisión de Cheetahs


Draken International demanda a Denel por R124 millones por no entregar aviones Cheetah

Por Guy Martin || Times Live





Denel, fabricante estatal de equipo militar.
Imagen: Karen Moolman

El conglomerado estatal de defensa Denel enfrenta una demanda de US$7 millones (R124 millones) de la empresa estadounidense Draken International por no entregar nueve de los 12 aviones de combate Cheetah encargados en 2017 para entrenamiento aéreo en adversarios.

El 19 de agosto, Draken International demandó a Denel Aeronautics ante el tribunal del distrito medio de Florida por incumplimiento de contrato por un presunto incumplimiento de un acuerdo de venta de aeronaves por US$35,2 millones (R624 millones).

La demanda, presentada por Simpson Thacher & Bartlett y Stearns Weaver Miller Weissler Alhadeff & Sitterson, alega que Denel entregó solo tres de las 12 aeronaves Cheetah contratadas durante siete años, adeudando a Draken 7,1 millones de dólares en pagos anticipados más daños y perjuicios. Al parecer, Draken pagó a Denel 12,7 millones de dólares (225 millones de rands) en el marco del proyecto.

Los registros judiciales indican que el caso fue asignado a un juez el 20 de agosto y que se emitió una citación a Denel el 21 de agosto.

El 27 de agosto, Denel declaró estar al tanto de los procedimientos legales en Florida y que se opondrá al asunto. La empresa presentará sus notificaciones legales ante el tribunal.

Mientras el asunto se encuentre en los tribunales, Denel no emitirá comentarios sobre los pros y los contras del mismo. Sin embargo, Denel asegura a las partes interesadas que mantiene su compromiso de cumplir con sus obligaciones contractuales, fortalecer su rendimiento operativo y garantizar la sostenibilidad a largo plazo del negocio. Denel continúa enfocándose en mejorar sus capacidades y restaurar la confianza de sus socios y clientes, tanto a nivel local como internacional.

En diciembre de 2017, Denel llegó a un acuerdo para la venta de 12 aviones de combate Cheetah, antiguos de la Fuerza Aérea Sudafricana, a Draken International. El contrato incluía la puesta en servicio y las pruebas de aceptación de vuelo en Sudáfrica, así como la entrega de las aeronaves a Estados Unidos.

Draken International, con sede en Florida, iba a utilizar los aviones para apoyo aéreo, entrenamiento de pilotos y ejercicios tácticos. La venta incluyó nueve aviones monoplaza Cheetah C y tres biplaza Cheetah D. Estos se habrían utilizado para entrenamiento de adversarios para la Fuerza Aérea, la Armada y el Cuerpo de Marines de Estados Unidos. Draken consideró al Cheetah como un complemento a sus 22 Mirage F1M españoles modernizados y equipados con radar.

Denel es la autoridad de diseño del caza Cheetah, desarrollado localmente como una variante del Mirage III en la década de 1980. El avión se retiró del servicio activo en 2008 tras la adquisición por parte de Sudáfrica de una nueva flota de cazas Saab Gripen. Denel entregó previamente 12 Cheetah a la Fuerza Aérea Ecuatoriana en 2011.

Denel Aeronautics entregó los dos primeros cazas Cheetah reacondicionados (un monoplaza y un biplaza) a Draken International en octubre de 2019, en el marco del Proyecto Dragón. Se cree que el tercer avión se entregó a mediados de 2021.

Además de los Cheetah, Draken International adquirió un amplio suministro de repuestos y equipos de Denel para apoyar la flota de Cheetah, incluyendo el simulador Cheetah de la Base Aérea Makhado.

DefenceWeb entiende que las entregas se vieron obstaculizadas por retrasos en Denel para que el avión volviera a estar en condiciones de volar (en particular, la sustitución de los componentes de los asientos eyectables), además de problemas de capacidad relacionados con la captura del Estado y la pandemia de COVID-19. Estados Unidos también redujo el entrenamiento externo contra adversarios, lo que resultó en una menor demanda de los Cheetahs.

Según Darren Olivier, director de African Defence Review, "es una triste historia de mala suerte, un mal momento y oportunidades perdidas, vinculada a la captura del Estado que afectó el flujo de caja de Denel, la COVID-19 y la pérdida de un contrato clave con Draken para este modelo por parte de la USAF".

Olivier afirmó que el equipo de Denel en Aeronautics estaba realizando un "trabajo fantástico y de altísima calidad" para que los Cheetahs volvieran a estar completamente listos para volar con Draken hasta que la captura del Estado comenzó a afectar negativamente a Denel y su flujo de caja, siendo Aeronautics una de las primeras afectadas.

Denel ya no podía pagar a los proveedores ni a los salarios del personal, ni comprar piezas como los asientos eyectables para los Cheetah. Esto ralentizó enormemente el proceso. Luego llegó la COVID-19 y tuvo sus propias consecuencias devastadoras. El proyecto se paralizó, pero aún era recuperable.

Sin embargo, en 2021, Draken perdió el contrato de la USAF para el que estaban destinados los Cheetah, y cualquier deseo de ambas partes de completar el programa se desvaneció. "Solo se enviaron tres Cheetah a EE. UU., pero ninguno voló, ya que Denel no podía en ese momento (pero sí más tarde) dar soporte a los asientos eyectables. El resto permanece en Denel, aunque no estoy seguro de cuántos se regeneraron. Creo que la mayoría", dijo Olivier.

Si el Departamento de Empresas Públicas y el Tesoro Nacional hubieran actuado con mayor rapidez y hubieran comprendido el valor de mantener contratos como este, podrían haber proporcionado financiación puente para que Denel pudiera finalizar las entregas y Draken podría estar volando esos Cheetah hoy. Pero


 "No dudaron", añadió.

"Es otro ejemplo de una combinación de corrupción, malas decisiones administrativas y falta de experiencia y capacidad en todos los departamentos gubernamentales, que está destruyendo partes de la industria de defensa sudafricana, especialmente Denel, y socavando la credibilidad del país. Me hubiera encantado ver a los Cheetahs rejuvenecer con los colores de Draken en lugar de languidecer en un hangar o, peor aún, ser desguazados. Espero que se pueda llegar a un acuerdo justo".


jueves, 23 de enero de 2025

Cicaré: Certificando el futuro

¿Qué empresa argentina rompió las reglas para conquistar el cielo?





Cuando escuchamos hablar de innovación y tecnología en la aviación, pensamos en gigantes internacionales. Pero aquí, en suelo argentino, existe una empresa que no solo compite, sino que lidera en un segmento extremadamente especializado: los helicópteros ultralivianos. CICARÉ , con más de seis décadas de trayectoria, no solo fabrica aeronaves; escribe la historia de la aviación con cada uno de sus modelos. Desde el monoplaza CICARE 7 hasta el biplaza CICARE 8 y el revolucionario entrenador de vuelo SVH4, esta empresa representa la cumbre de la ingeniería aeronáutica argentina.

Pero esta historia no es solo sobre helicópteros. Es una historia de colaboración, esfuerzo conjunto y superación de barreras. Y aquí entra en escena el INTI  (Instituto Nacional de Tecnología Industrial), cuya asistencia fue clave para que CICARE diera un salto de calidad y conquistara nuevos mercados.

Innovación con ADN argentino

CICARE se distingue en el mundo no solo por fabricar helicópteros ultralivianos, sino por innovar constantemente. Su producto estrella, el CICARE 8, es un helicóptero biplaza ultraliviano, maniobrable y eficiente, con alternativas de motorización que lo convierten en una herramienta ágil y versátil. Pero su verdadero valor radica en el rotor semi-rígido, que permite maniobras agudas con mínimas vibraciones, incluso a máxima potencia.
Pocas empresas en el mundo desarrollan esta categoría de aeronaves, y CICARE es la única en América Latina que diseña, desarrolla y produce helicópteros de este tipo. De hecho, sus competidores europeos utilizan tecnología desarrollada por esta empresa argentina.

El desafío de volar alto: Certificar en Alemania

"En el proceso de expansión al mercado europeo, CICARE enfrentó el desafío de cumplir con las rigurosas normativas de la Asociación Alemana de Vuelo Ultralivian (DULV). Fue entonces cuando el INTI asumió un rol clave como socio estratégico. "Desde el Laboratorio de Ensayos No Destructivos del Departamento de Mecánica, realizamos los ensayos necesarios para que la empresa pudiera obtener la certificación según la norma 995221, un requisito fundamental para garantizar la seguridad, el rendimiento y la operatividad de sus aeronaves", explica Alejandro Ferenz, especialista del laboratorio.

"Uno de los ensayos más desafiantes consistió en evaluar la resistencia de los asientos del CICARE 8 en situaciones de emergencia. Simulamos un aterrizaje forzoso para comprobar que la estructura del helicóptero pudiera absorber adecuadamente la energía del impacto y proteger a los tripulantes. El éxito de esta prueba no solo permitió a CICARE obtener la certificación alemana, sino que también marcó un hito: es la primera empresa en el mundo en lograr esta homologación para la categoría ULH (Ultra Liviano Helicóptero). Haber formado parte de este logro es un orgullo tanto para el INTI como para todo el equipo que trabajó en este proyecto", concluye Ferenz.  

Una colaboración que trasciende fronteras

 Juan Manuel Cicare, titular de la empresa, lo resume así: “El INTI nos dio la seguridad de que cumplimos con las exigencias para obtener la certificación que hoy nos hace únicos en el mundo. Gracias a esto, no solo exportamos un producto, sino también nuestra tecnología e innovación al mundo”.
El impacto de esta certificación no se limita a Europa. CICARE ya exporta el 70% de su producción a los cinco continentes. Con esta nueva acreditación, la empresa está en condiciones de expandir su presencia en mercados clave como Alemania y Estados Unidos

Desafíos y futuro

Pero no todo es viento en popa. CICARE enfrenta el desafío de sostener su nivel de calidad y producción en un contexto donde la formación de recursos humanos especializados es escasa. “Necesitamos ingenieros en procesos, soldadores certificados y técnicos altamente calificados. Nuestra capacidad de crecer depende de las personas”, enfatiza Cicaré. A pesar de esto, la empresa planea aumentar su producción anual de helicópteros y consolidar su posición en ferias internacionales.

El INTI como motor del desarrollo industrial

La asistencia del INTI no se limita a los ensayos. También colaboró en la evaluación técnica para la certificación de importaciones temporarias, asegurando que los componentes utilizados cumplan con los estándares internacionales explica Alejandro Ferenz.  
Esta alianza demuestra cómo la industria y el sector público pueden trabajar juntos para posicionar a la Argentina como un referente en tecnología e innovación.

Una historia que inspira

CICARE no es solo una empresa. Es un ejemplo de cómo la pasión por la innovación y el compromiso con la calidad pueden superar cualquier barrera. Desde el pequeño pueblo de Saladillo, sus helicópteros llevan la bandera argentina a los cielos del mundo. Y con el respaldo del INTI, su vuelo apenas comienza.

domingo, 10 de noviembre de 2024

Argentina: ¿Cómo instalar una planta de producción de drones?

¿Cómo instalar una planta de drones FPV?

EMcL

 


En el contexto global actual, las fuerzas armadas de todo el mundo se enfrentan a desafíos tecnológicos y estratégicos que demandan una constante actualización y adaptación de sus capacidades. Argentina, como parte de esta dinámica, no es la excepción. En particular, el desarrollo y uso de drones FPV (First-Person View) ha emergido como una tecnología clave en los conflictos modernos, siendo el conflicto en Ucrania un ejemplo reciente y relevante. Las Fuerzas Armadas Argentinas, comprometidas con la defensa nacional y la preservación de su integridad territorial, deben considerar la incorporación de estas tecnologías en su arsenal, y para ello es fundamental la asignación de fondos en el presupuesto público destinados a la creación de una planta de ensamble y producción de drones FPV. Los drones FPV son los fusiles Máuser del soldado de infantería de hace un siglo atrás.

Lecciones del conflicto en Ucrania

El uso de drones en el conflicto entre Rusia y Ucrania ha demostrado el valor de estas herramientas no solo en tareas de reconocimiento y vigilancia, sino también en operaciones ofensivas directas. Los drones FPV, que permiten a los operadores controlar el dispositivo en tiempo real con una visión en primera persona, han sido empleados tanto por las fuerzas ucranianas como por las rusas para ataques de precisión, reconocimiento avanzado y misiones de inteligencia. Estas plataformas han probado ser relativamente económicas en comparación con otros sistemas de armas, y su capacidad para atacar con precisión a objetivos estratégicos ha transformado la forma en que se conduce la guerra moderna.

La lección clave para Argentina y otros países es que los drones FPV, dada su versatilidad, eficiencia y costo relativamente bajo, pueden convertirse en un elemento central dentro de una estrategia de defensa moderna. No se requiere de un ejército inmenso ni de recursos ilimitados para desarrollar capacidades de ataque y defensa eficientes si se aprovechan tecnologías emergentes como los drones FPV. Esto resalta la urgencia de establecer una planta de producción local, que no solo impulse la capacidad tecnológica de las fuerzas armadas argentinas, sino que también genere empleo y desarrollo en sectores clave como la electrónica y la ingeniería.

Beneficios de una planta de producción nacional

La creación de una planta de ensamble y producción de drones FPV en Argentina tiene múltiples ventajas estratégicas. En primer lugar, permitiría la reducción de la dependencia de equipos y tecnologías importadas, brindando a las fuerzas armadas una mayor autonomía para desarrollar y adaptar estas herramientas a las necesidades específicas del país. En un entorno geopolítico cada vez más incierto, la capacidad de fabricar armamento de alta tecnología a nivel local es una ventaja significativa para cualquier nación.

Además, la inversión en infraestructura para la producción de drones contribuiría al desarrollo industrial y tecnológico del país, fomentando la innovación en campos como la robótica, inteligencia artificial y sistemas de comunicación. Al posicionarse como un referente regional en la producción de estos equipos, Argentina podría incluso acceder a mercados internacionales, exportando sus tecnologías a otras naciones de la región con necesidades similares.


Justificación presupuestaria

El financiamiento de esta planta de producción debe considerarse una inversión estratégica para el futuro de la defensa nacional. Dado el costo relativamente bajo de los drones FPV en comparación con otros sistemas de armas, su producción en serie podría optimizar el presupuesto militar argentino, permitiendo a las fuerzas armadas adquirir equipos avanzados a un costo accesible. Además, una planta de ensamblaje podría adaptar las tecnologías de drones a las características del terreno y los objetivos operacionales de Argentina, lo que sería un beneficio adicional en la planificación de misiones de defensa y seguridad nacional.

La guerra en Ucrania ha demostrado que las nuevas tecnologías, como los drones FPV, son esenciales para cualquier fuerza militar moderna. Para las Fuerzas Armadas Argentinas, la creación de una planta de ensamble y producción de drones no solo mejoraría su capacidad operativa, sino que también sería un motor para el desarrollo tecnológico y económico del país. Invertir en esta infraestructura es clave para asegurar una defensa eficiente y preparada ante los desafíos del futuro. Analicemos en este informe qué significa poner una planta de ensamble o fabricación de drones en vistas de la importancia estratégica de este recurso. Lamentablemente, todo apunta a llevarnos bien con China porque la enorme mayoría de los proveedores son de ese origen.



Inversión inicial requerida para una planta de producción de drones FPV

La inversión inicial para establecer una planta de fabricación de drones FPV varía dependiendo de la escala del proyecto, el nivel de automatización, y si decides fabricar todas las piezas internamente o subcontratar algunos componentes. A continuación, se presenta un desglose general de los costos aproximados:

1. Costos de infraestructura y equipamiento

  • Alquiler o compra de espacio: Dependiendo de la ubicación y el tamaño, el costo de alquiler o compra de un espacio adecuado para una planta de producción puede variar enormemente. Para un espacio de unos 500 a 1000 m² (suficiente para producción pequeña a mediana), los costos pueden estar entre:
    • Alquiler: $3,000 a $10,000 USD por mes.
    • Compra: $200,000 a $500,000 USD (dependiendo de la ubicación).
  • Renovaciones y adaptaciones: Costos asociados con la adecuación del espacio para la producción, como la instalación de ventilación adecuada para el trabajo con fibra de carbono, estaciones de soldadura y áreas de ensamblaje.
    • Costo estimado: $20,000 a $50,000 USD.


Debe tenerse en cuenta que debido a los recortes presupuestarios en distintos bases militares y fábricas existen amplios espacios en los cuales podría montarse un planta de ensamble de drones estilo ucraniana. Estos costos, en cierto sentido, pueden ser menores. Asimismo, debiera pensarse también en una fuerte interacción con el sector privado a fin de interactuar con aparatos completamente off-the-shelf que son simplemente adecuados al uso militar (especialmente cuando se les añade una carga explosiva).

 

2. Maquinaria y herramientas

  • Máquinas CNC para cortar fibra de carbono (ver apéndice abajo): Una máquina CNC de calidad media para cortar fibra de carbono puede costar entre:
    • Costo Estimado: $10,000 a $50,000 USD por unidad, dependiendo del tamaño y precisión.
  • Impresoras 3D: Dependiendo del número de impresoras 3D que necesites para piezas personalizadas (TPU y otros materiales), una buena impresora 3D costará entre:
    • Costo Estimado: $500 a $5,000 USD por impresora (puedes necesitar varias dependiendo del volumen de producción).
  • Estaciones de soldadura: Para la soldadura de controladores de vuelo, ESCs, motores, etc.
    • Costo estimado: $100 a $500 USD por estación de soldadura. Se necesitarán varias estaciones para un flujo continuo de producción.
  • Herramientas de ensamblaje y ESD (Protección contra Descargas Electrostáticas):
    • Costo estimado: $5,000 a $10,000 USD para todo el equipo de ensamblaje (destornilladores, pinzas, multímetros, etc.) y equipo de protección ESD.
  • Equipos de pruebas y calidad: Simuladores de vuelo, bancos de pruebas para motores y drones, medidores de potencia, etc.
    • Costo estimado: $5,000 a $15,000 USD.

3. Suministros y materias primas

  • Materiales iniciales (carbono, motores, controladores de vuelo, ESC, hélices, etc.): Para una producción inicial (primer lote de drones), necesitarás un stock adecuado de materiales y componentes.
    • Costo estimado: $20,000 a $50,000 USD para adquirir suficientes piezas y materias primas para los primeros lotes de producción.

4. Costos de Personal

  • Salarios de personal técnico y operativo: Dependiendo de la ubicación, los salarios pueden variar. Para un equipo inicial de ingenieros, técnicos y personal de ensamblaje, los costos salariales pueden ser:
    • Ingenieros de diseño y electrónica: $40,000 a $70,000 USD anuales por ingeniero.
    • Técnicos de ensamblaje: $20,000 a $40,000 USD anuales por trabajador.
    • Personal de calidad/pruebas: $25,000 a $50,000 USD anuales.

5. Desarrollo de marca y marketing

  • Marketing y comercio electrónico: Para crear una marca en el mercado FPV, es fundamental invertir en campañas de marketing digital, desarrollo de sitio web y presencia en redes sociales.
    • Costo estimado: $10,000 a $30,000 USD para campañas iniciales, desarrollo de tienda online y publicidad en redes sociales.

6. Licencias, certificaciones y cumplimiento

  • Certificaciones de seguridad y cumplimiento: Dependiendo del país, es posible que necesites certificaciones de seguridad (FCC, CE, RoHS) para los componentes electrónicos y los drones completos.
    • Costo estimado: $5,000 a $20,000 USD, dependiendo de la cantidad de certificaciones requeridas.
  • Permisos y licencias: Registros, permisos de operación, y otros requisitos locales.
    • Costo Estimado: $2,000 a $5,000 USD.

Resumen de inversión estimada

A continuación, se muestra un resumen de los costos aproximados para la inversión inicial:



Tiempo necesario para comenzar la producción

El tiempo requerido para comenzar la producción depende de varios factores, como la contratación de personal, la adquisición de maquinaria, y la adaptación del espacio de producción. Un cronograma típico puede verse así:

1. Diseño y planificación (1-3 meses)

  • Finalización de diseños de drones y planes de producción.
  • Investigación y adquisición de proveedores de materiales y componentes.
  • Cumplimiento con las normativas locales y obtención de licencias.

2. Instalación de maquinaria y configuración (2-4 meses)m

  • Compra e instalación de máquinas CNC, impresoras 3D y herramientas de ensamblaje.
  • Instalación de estaciones de trabajo y equipos de pruebas.
  • Configuración del sistema de inventario y gestión de producción.

3. Contratación y capacitación (1-3 meses)

  • Contratación de ingenieros, técnicos de ensamblaje y personal de calidad.
  • Capacitación de los empleados en el uso de maquinaria y procesos de fabricación.

4. Prototipado y pruebas (1-2 meses)

  • Prototipado de los primeros drones y pruebas de calidad.
  • Ajustes en los procesos de producción según los resultados de las pruebas.

5. Producción Inicial (1-2 meses)

  • Comienzo de la producción a pequeña escala para asegurar que todos los procesos estén funcionando correctamente.
  • Verificación final de calidad y embalaje para el lanzamiento al mercado.

Cronograma estimado total: 6 a 12 meses

Este período incluye la fase de planificación, instalación, contratación y la producción inicial. Con una buena gestión, puedes estar listo para comenzar la producción en aproximadamente 6 meses, aunque esto puede variar según la complejidad del proyecto y la rapidez con que se adquieran las herramientas y el personal.


¿Cómo producir drones FPV?

1. Descripción básica para establecer una planta de producción de drones FPV

  • Planificación y diseño: Define el alcance de la producción de drones FPV: ¿qué tipos de drones fabricarás (drones de carreras, drones de freestyle, cinewhoops, drones de largo alcance)? Considera qué partes serán subcontratadas y cuáles se fabricarán internamente.
  • Diseño del producto y prototipado: Desarrolla o adquiere archivos de diseño para los marcos, la electrónica (controladores de vuelo, ESC, etc.), y otros componentes. Comienza con modelos CAD y prototipa varias iteraciones para asegurar el rendimiento.
  • Investigación de mercado y cumplimiento: Investiga tu mercado objetivo (aficionados, profesionales, creadores de contenido) y asegúrate de cumplir con las regulaciones locales e internacionales de aviación y fabricación electrónica, como las certificaciones de la FCC (Comisión Federal de Comunicaciones) o CE.

2. Proveedores clave y suministradores

Necesitarás identificar proveedores para varios componentes y servicios en la fabricación de drones FPV:

Componentes principales

  • Marcos: Los marcos generalmente están hechos de fibra de carbono. Busca proveedores especializados en corte preciso de fibra de carbono.

  • Motores: Los motores deben ser adquiridos de fabricantes confiables que ofrezcan motores sin escobillas de alta calidad.

  • Controladores de vuelo (FCs) y ESCs: El “cerebro” electrónico y los controladores de velocidad del dron deben ser fiables y con muchas funciones.

  • Sistemas FPV (cámaras, VTX y antenas): El sistema FPV incluye la cámara, el transmisor de video y las antenas.

Baterías y sistemas de energía

  • Baterías LiPo: Conseguir baterías de polímero de litio (LiPo) de alta calidad es esencial para una entrega de energía constante.

  • Cargadores: También necesitarás un proveedor para cargadores de baterías de alto rendimiento y tableros de balanceo.

Otros materiales clave y accesorios

  • Hélices: Fuente de hélices duraderas y equilibradas.

  • Hardware: Necesitarás pequeñas piezas como tornillos, tuercas, pernos, separadores y amortiguadores de vibración.

  • Componentes impresos en 3D: Para piezas personalizadas, necesitarás una configuración de impresión 3D o un proveedor externo para plásticos flexibles como TPU.

 


3. Requisitos de personal

El personal necesario variará según la escala de la operación y la cantidad de automatización. A continuación, algunos de los roles esenciales para una planta de fabricación de drones FPV:

Personal técnico y de ingeniería

  • Ingenieros de diseño: Responsables de crear y probar diseños de drones utilizando software CAD y trabajar en estrecha colaboración con producción para optimizar diseños para la fabricación.
  • Ingenieros mecánicos: Se centran en la selección de materiales, diseño de marcos y aseguramiento de la durabilidad.
  • Ingenieros eléctricos: Diseñan e integran controladores de vuelo, ESC, placas de distribución de energía (PDB) y garantizan que todos los componentes electrónicos funcionen eficientemente.
  • Técnicos de control de calidad/pruebas: Especialistas en probar cada dron para el rendimiento, durabilidad y fiabilidad antes de su envío.

Trabajadores de fabricación y ensamblaje

  • Técnicos de fabricación de marcos: Con habilidades para operar máquinas CNC para corte de fibra de carbono, o gestionar operaciones de impresión 3D.
  • Técnicos de ensamblaje: Personal capacitado para ensamblar drones, soldar componentes electrónicos, instalar motores e integrar sistemas FPV.
  • Personal de embalaje y envío: Responsables de empaquetar de forma segura los productos terminados y gestionar la logística.

Personal de soporte

  • Especialistas en compras: Encargados de adquirir materiales, negociar con proveedores y mantener las cadenas de suministro.
  • Gerentes de logística y almacén: Manejan la coordinación de envíos, inventario y gestión de la cadena de suministro.
  • Equipo de marketing y ventas: Ayuda a desarrollar la presencia de la marca en el mercado FPV, gestiona las ventas directas al consumidor y supervisa el servicio al cliente.

4. Equipo y herramientas

  • Máquinas CNC: Para cortar fibra de carbono, aluminio u otros materiales utilizados en los marcos.
  • Impresoras 3D: Para piezas personalizadas como soportes para cámaras u otros componentes flexibles.
  • Estaciones de soldadura: Para ensamblar manualmente componentes electrónicos como motores, controladores de vuelo y VTX.
  • Herramientas de línea de ensamblaje: Destornilladores de precisión, llaves, alicates y multímetros para el control de calidad.
  • Protección ESD: Equipo antiestático para proteger los componentes electrónicos sensibles de las descargas electrostáticas.

5. Flujo de trabajo de fabricación

  • Fase de diseño: Los ingenieros diseñan el dron en software CAD, simulan pruebas de esfuerzo e imprimen prototipos con impresoras 3D.
  • Abastecimiento de componentes: Identifica proveedores confiables y desarrolla asociaciones para asegurar un flujo constante de partes esenciales.
  • Producción de marcos: Utiliza máquinas CNC para cortar las piezas de fibra de carbono para los marcos.
  • Montaje electrónico: Instalación y soldadura del FC, los ESC, los motores y el cableado. Prueba cada unidad para asegurar la calidad.
  • Integración del sistema FPV: Instalación de la cámara FPV, el VTX y las antenas, asegurando la compatibilidad con diferentes gafas y receptores.
  • Pruebas finales: Realiza pruebas de vuelo y de resistencia para asegurar la durabilidad y el rendimiento.
  • Control de calidad y empaque: Inspecciona el producto final en busca de defectos, empaquétalo de manera segura y organiza el envío.

6. Cumplimiento y certificaciones

  • Normas de seguridad: Cumple con las normas de seguridad locales e internacionales como CE (Europa) o FCC (EE. UU.).
  • Cumplimiento ambiental: Asegúrate de que tus procesos de producción cumplan con las regulaciones ambientales, especialmente en lo que respecta al polvo de fibra de carbono y la eliminación de desechos electrónicos.
  • Regulaciones de drones: Asegúrate de que los drones cumplan con las regulaciones de las autoridades de aviación, como la FAA en Estados Unidos o EASA en Europa, particularmente en cuanto a límites de peso y transmisión FPV.

7. Costos estimados

  • Costos de Instalación Inicial:

    • Espacio de fábrica: Alquilar o comprar un almacén para fabricación y ensamblaje, generalmente con techos altos y buena ventilación para la producción de fibra de carbono.
    • Máquinas CNC e Impresoras 3D: Entre $50,000 y $200,000 dependiendo del número y tamaño de las máquinas.
    • Estaciones de soldadura, herramientas y consumibles: Aproximadamente $10,000 a $20,000.
    • Seguro de responsabilidad: Seguro de fabricación para cubrir a los trabajadores y productos.
  • Costos continuos:

    • Adquisición de materiales: Fibra de carbono, motores, componentes electrónicos y accesorios.
    • Costos laborales: Salarios para el personal técnico, los trabajadores de ensamblaje y el personal de soporte.
    • Investigación y desarrollo: Mejoras continuas del producto y desarrollo de nuevos modelos.

8. Consideraciones clave para el sector civil

  • Escalabilidad: Se comienza a pequeña escala produciendo solo algunos tipos de drones y se expande gradualmente a diferentes categorías (por ejemplo, carreras, cinewhoop, largo alcance).
  • Asociaciones: Forma asociaciones estratégicas con comunidades FPV, influencers y minoristas como GetFPV o RaceDayQuads.
  • Marketing y distribución: Ten una sólida presencia en línea y una estrategia de comercio electrónico directo al consumidor. Usa las redes sociales, YouTube y foros FPV para aumentar la conciencia de marca.







Apéndice: ¿Qué es un máquina CNC?

Una máquina CNC (Control Numérico por Computadora, por sus siglas en inglés) es un tipo de máquina herramienta que opera bajo el control de una computadora. CNC permite automatizar el proceso de fabricación mediante instrucciones programadas que controlan los movimientos de la máquina para cortar, esculpir o modificar materiales como metal, madera, plásticos o, en el caso de drones FPV, fibra de carbono.

Características Clave de las Máquinas CNC

  • Control Computarizado: Las máquinas CNC ejecutan instrucciones preprogramadas a través de un software, que le indica a la máquina cómo y dónde cortar o esculpir el material.
  • Alta Precisión: Gracias al control computarizado, las máquinas CNC son extremadamente precisas y pueden repetir procesos con consistencia, algo esencial en la fabricación de piezas complejas como marcos de drones.
  • Versatilidad: Estas máquinas pueden trabajar con una amplia gama de materiales, incluidos metales, madera, plásticos y fibra de carbono, que es clave en la fabricación de drones FPV por su ligereza y resistencia.
  • Automatización: Una vez que se configura el programa de fabricación, la máquina puede operar de manera autónoma con supervisión mínima, lo que reduce la necesidad de intervención manual y el error humano.


Aplicaciones en la Producción de Drones FPV

En la fabricación de drones FPV, las máquinas CNC se utilizan principalmente para:

  • Corte de Fibra de Carbono: La fibra de carbono se utiliza para los marcos de los drones debido a su alta relación resistencia-peso. Las máquinas CNC cortan las láminas de fibra de carbono con gran precisión para formar los brazos y las placas de los drones.
  • Producción de Piezas Metálicas o Plásticas: Además de la fibra de carbono, las CNC pueden fabricar piezas adicionales que requieran materiales metálicos (soportes, tornillos) o plásticos (partes no estructurales).

Tipos Comunes de Máquinas CNC

  • Fresadoras CNC: Utilizan fresas (herramientas de corte giratorias) para remover material y dar forma a la pieza, muy usadas para trabajar metales o plásticos.
  • Cortadoras CNC por Láser o Agua: Utilizan un láser o un chorro de agua de alta presión para cortar materiales como la fibra de carbono o metales finos.
  • Tornos CNC: Se usan para piezas que necesitan ser torneadas o trabajadas en formas cilíndricas o esféricas.

Ventajas de las Máquinas CNC

  • Precisión: La capacidad de hacer cortes y movimientos extremadamente precisos es una ventaja clave, especialmente en la fabricación de componentes delicados y detallados como los marcos de drones FPV.
  • Eficiencia: Permite producir grandes cantidades de piezas de forma eficiente y rápida, mejorando el rendimiento de la planta de producción.
  • Repetitividad: Puede hacer exactamente el mismo proceso una y otra vez, asegurando consistencia en todas las piezas fabricadas.

Ejemplos de Máquinas CNC para Fabricación de Drones

  • Shapeoko CNC: Popular entre fabricantes pequeños y medianos por su capacidad de trabajar con precisión en diversos materiales.
  • Tormach CNC: Conocida por ofrecer máquinas CNC de alta precisión para pequeños talleres de fabricación.

En resumen, una máquina CNC es esencial en la fabricación de drones FPV debido a su capacidad para crear piezas de alta precisión y durabilidad a partir de materiales como la fibra de carbono.