El Raybe VTOL, un dron de fabricación indonesia con la Fuerza Aérea
Dron Raybe (foto: Terra Drone)
Los drones Raybe fabricados por PT Terra Drone Indonesia pueden competir con productos extranjeros en mapeo aéreo. Con características superiores como VTOL y certificación TKDN del 25%, Raybe es adecuado para su uso en condiciones extremas en Indonesia. Además del mapeo, este dron también se puede utilizar para otras aplicaciones, como la identificación de la salud de las plantas y la mitigación de desastres.
Los productos de drones fabricados en Indonesia no son menos competitivos que los fabricados en el extranjero. Uno de los drones fabricados localmente que puede competir con productos extranjeros es el dron Raybe fabricado por el fabricante con sede en Bandung, Bentara Tabang Indonesia (BETA). Raybe es un avión de despegue y aterrizaje vertical (VTOL) capaz de volar en áreas limitadas y tiene un alcance de hasta 50 km. Este dron Raybe también ha sido certificado con el Nivel de Componentes Domésticos (TKDN) por el Ministerio de Industria con el número 4996/SJ-IND.8/TKDN/6/2023 con componentes TKDN de hasta un 25%.
Desarrollado para satisfacer necesidades cartográficas complejas, RAYBE ofrece excelencia no sólo en flexibilidad sino también en precisión, asegurando una recopilación de datos precisa y eficiente. Con un diseño compacto, este dron puede despegar y aterrizar suavemente incluso en espacios limitados, lo que lo hace muy adecuado para mapear los contornos extremos de Indonesia. La cartografía aérea presenta una serie de desafíos únicos, por lo tanto, RAYBE está aquí para superar varios desafíos al estar equipado con características superiores, que incluyen:
Especificaciones del Dron
Configuración: VTOL Tilt-Rotor Eléctrico
Material: Compuesto avanzado
Envergadura: 1830 mm
Planta alar: 1270 mm
Peso en vacío: 3650 gramos
MTOW (Peso Máximo de Despegue): 5200 gramos
Carga útil máxima: 500 gramos
Dimensiones del estuche rígido: 95x65x35 cm
Rendimiento
Tiempo de vuelo: Hasta 50 minutos
Alcance de telemetría LOS: Hasta 8 kilómetros
Velocidad máxima: 22 metros por segundo
Velocidad de crucero: 17 metros por segundo
Velocidad de pérdida: 14 metros por segundo
Opciones de carga útil:
Cámara RGB APS-C 20 MP
Cámara RGB Full Frame 24 MP
Cámara RGB Full Frame 42 MP
Cámara Multiespectral RedEdge-P
Gimbal de monitoreo Ultra HD 4K
Cámara RGB Full Frame 60 MP
Kit Módulo RTK EMLID Reach
Además de la cartografía, los drones Raybe también se pueden utilizar para otras aplicaciones, entre ellas:
Identificación de la salud de las plantas: el sensor multiespectral integrado de Raybe permite un mapeo de alta precisión de la salud y madurez de las plantas, basado en el análisis de la reflectancia y la densidad de las plantas.
Análisis de la condición del suelo: con la capacidad de evaluar las condiciones del suelo, como el contenido de humedad, el contenido de materia orgánica, los niveles de nutrientes y la textura del suelo, Raybe ayuda a una gestión más eficaz de los recursos agrícolas.
Censo y recuento de árboles: mediante el uso de imágenes aéreas obtenidas con drones, el censo y el recuento de árboles se pueden realizar de forma fácil y rápida.
Mitigación de desastres: Raybe se presenta como una herramienta confiable para mapear áreas afectadas por desastres naturales, como erupciones volcánicas, al producir ortofotos detalladas y mapas 3D.
Raybe VTOL ha sido ampliamente utilizado por varias empresas y agencias nacionales. Terra Drone Indonesia también utiliza Raybe para realizar diversos trabajos en las industrias de la construcción, la minería y la agricultura.
Indra Permana Sopian, CEO de BETA UAS, afirmó: "Raybe ya tiene un certificado TKDN, por lo que es muy adecuado para las compras gubernamentales. Los usuarios tampoco necesitan preocuparse porque Raybe es un producto local, si hay un problema o daño en el campo, el equipo de Raybe puede venir inmediatamente a repararlo o incluso enviar un dron de reemplazo. Solo el año pasado, Raybe fue adquirida por varias empresas como el Ministerio de PUPR, PT Timah Tbk, Adaro, Pusri, BNPB y PT POS para el lanzamiento de centros logísticos en IKN".
Michael Wishnu Wardana, director general de Terra Drone Indonesia, afirmó: “Terra Drone Indonesia depende en gran medida de los drones Raybe para diversos trabajos difíciles. Hasta el momento no ha habido problemas significativos durante su uso. Hace algún tiempo también adquirimos varias unidades Raybe para introducirlas en el centro de Japón y está previsto utilizarlas en varios países en el futuro”.
Como usuario que ha demostrado su superioridad, Terra Drone Indonesia, que también es revendedor de drones Raybe, puede presentar la tecnología y su uso a los clientes en Indonesia. Además de vender productos y servicios de drones Raybe, Terra Drone también ofrece capacitación para garantizar que los usuarios puedan aprovechar al máximo los drones.
Un ataque multifrontal simultáneo es atacar un blanco desde distintas direcciones al mismo tiempo. Es un elemento costoso de conseguir porque exige muchos recursos dado que la fuerza de ataque debe cubrir al menos dos frentes o direcciones y, más difícil aún, debe ser coordinado, es decir todo el movimiento debe hacerse al mismo tiempo. ¿Qué dificultades enfrenta el defensor? La saturación. Defiende un frente y, por costo de oportunidad, desatiende el otro y viceversa. La historia presenta un caso apasionante.
La Batalla de Midway fue un punto de inflexión crucial en la Segunda Guerra Mundial, donde un ataque simultáneo no intencionado de las fuerzas aeronavales estadounidenses desempeñó un papel decisivo. Durante la batalla, los aviones estadounidenses lanzaron ataques secuenciales desde una misma dirección a la vez. Los comandantes de portaaviones llegaron a esquivar la mayoría de estos ataques (¡un capitán lo hizo más de 70 veces en ese fatídico día!), torpedos y bombas caían por las bordas de estos enormes buques pero ni hacían mella en ellos. Sin embargo, una partida de ataque dirigida por el comandante McClusky perdió su rumbo y al volver para re-encausar el ataque lo realizó desde un inesperado Suroeste, coincidiendo con otra partida de ataque dirigida por el teniente Leslie provenía de Noreste al mismo tiempo, sorprendiendo por completo a la flota japonesa. Este ataque simultáneo desde dos flancos diferentes, llevado a cabo principalmente por bombarderos en picado SBD Dauntless, resultó en la destrucción casi inmediata de tres portaaviones japoneses empezando por el Kaga, lo que cambió el curso de la guerra en el Pacífico.
Las consecuencias de este ataque fueron devastadoras para la Armada Imperial Japonesa. La pérdida de cuatro portaaviones, junto con pilotos experimentados y aviones, debilitó gravemente su capacidad operativa. Esta victoria permitió a los Estados Unidos pasar de una posición defensiva a una ofensiva en el teatro del Pacífico, alterando el equilibrio de poder y marcando el inicio del declive de la supremacía naval japonesa.
2. La Batalla de Midway
La Batalla de Midway, ocurrida del 4 al 7 de junio de 1942, es una de las confrontaciones más importantes de la Segunda Guerra Mundial en el Teatro del Pacífico, marcando un punto de inflexión en la guerra. Durante esta batalla, un evento crucial fue el ataque simultáneo de dos formaciones de aviones estadounidenses desde diferentes direcciones, lo que resultó en la devastadora destrucción de los portaaviones japoneses.
2.1 Contexto previo
El 4 de junio de 1942, las fuerzas japonesas, bajo el mando del almirante Isoroku Yamamoto, lanzaron un ataque contra Midway con la esperanza de eliminar la amenaza de los portaaviones estadounidenses y asegurar el dominio en el Pacífico. Los japoneses confiaban en la sorpresa y la superioridad numérica. Sin embargo, gracias a la ruptura del código japonés por parte de la inteligencia estadounidense, los norteamericanos sabían de antemano los planes japoneses y prepararon una emboscada.
2.2 Ataques iniciales y esquiva de los japoneses
En la mañana del 4 de junio, los aviones estadounidenses lanzaron una serie de ataques aéreos desde sus portaaviones USS Enterprise, USS Hornet, y USS Yorktown contra la flota japonesa. Estos ataques iniciales consistieron en oleadas de aviones torpederos (principalmente TBD Devastators) y bombarderos en picado (SBD Dauntless). Los aviones torpederos atacaron primero, pero fueron diezmados por los cazas japoneses y el fuego antiaéreo; casi todos los aviones torpederos fueron derribados, y no lograron impactar a los portaaviones japoneses.
Durante estos primeros ataques, los comandantes de los portaaviones japoneses, como el vicealmirante Chuichi Nagumo, realizaron maniobras evasivas efectivas, logrando evitar los torpedos lanzados por los aviones estadounidenses. La combinación de maniobras hábiles, la protección de cazas Zero, y la falta de coordinación entre las diferentes oleadas de ataque permitieron a la flota japonesa esquivar la destrucción.
2.3 El ataque simultáneo decisivo
Sin embargo, mientras los aviones torpederos estadounidenses mantenían ocupadas a las defensas japonesas volando bajo y atrayendo a los cazas Zeros hacia niveles bajos, una fuerza de bombarderos en picado SBD Dauntless de los portaaviones USS Enterprise y USS Yorktown llegó a la escena desde una dirección diferente y en altitud. Liderados por los comandantes de escuadrón como el Teniente Comandante Wade McClusky y el Capitán de Corbeta Max Leslie, estos aviones aprovecharon que los cazas japoneses estaban ocupados a baja altura y que las maniobras evasivas japonesas habían dejado a los portaaviones en posiciones vulnerables.
En un giro del destino, los bombarderos en picado atacaron simultáneamente desde dos direcciones distintas: desde el noroeste y el sudoeste, tomando por sorpresa a los japoneses. Son las líneas de ataque 1 y 2 convergiendo a los blancos mientras sorpresivamente aparece una enorme ala de ataque 3 desde el suroeste, como se ilustra debajo. No deje de ver los dos videos añadidos para terminar de comprender el panorama de esta fantástica batalla aeronaval. Los portaaviones Akagi, Kaga, y Soryu fueron impactados casi simultáneamente en cuestión de minutos. Es que al querer esquivar los torpedos y bombas lanzadas por el grupo aéreo desde el Noreste, como lo habían hecho toda la mañana, quedaban alineados para los ataques provenientes desde el Suroeste. No había escapatoria. Las bombas penetraron en los hangares de los portaaviones, donde los aviones japoneses estaban siendo rearmados y repostados, lo que resultó en explosiones masivas que causaron incendios incontrolables. Este ataque decisivo resultó en la destrucción de tres portaaviones japoneses en rápida sucesión.
Más tarde, ese mismo día, un cuarto portaaviones japonés, el Hiryu, lanzó un contraataque que logró dañar severamente al USS Yorktown, pero fue finalmente localizado y destruido por aviones estadounidenses. Fue el fin de la Kidō Butai, la aviación naval imperial japonesa.
2.4 Consecuencias
La pérdida de los cuatro portaaviones japoneses en Midway fue un golpe devastador para la Armada Imperial Japonesa, ya que no solo perdió buques clave, sino también pilotos experimentados y aviones. La batalla cambió el equilibrio de poder en el Pacífico, permitiendo a los Estados Unidos pasar a la ofensiva en el teatro de operaciones.
El ataque simultáneo desde diferentes direcciones durante la Batalla de Midway se considera uno de los momentos más decisivos de la Segunda Guerra Mundial, demostrando la importancia de la coordinación y la sorpresa en el combate aéreo-naval. De todos modos, debe recalcarse que esta simultaneidad fue azarosa: el grupo que atacaba desde el Sudoeste simplemente se había perdido y volvía sobre sus pasos.
3. Pesadilla en el mar
Imaginen una operación naval a mar abierto. En dicha locación existe un alto potencial de ataques aéreos con bombas (tontas o LGB) o misiles antibuque (AShM) enemigos. Sin embargo, el infierno de Midway podría emerger personalizado en nuevos misiles AShM o misiles de crucero. Las nuevas amenazas, gracias a la digitalización, pueden hasta incluir diseño de guiado con inteligencia artificial. Por lo tanto, ni siquiera un humano estaría implicado en su gestión.
Un capitán de un buque capital moderno (como un destructor, crucero o portaaviones) enfrentado a un ataque simultáneo de múltiples de AShM desde diferentes direcciones tendría a su disposición una combinación de capacidades de defensa avanzada, obviamente imposibles de obtener en el contexto tecnológico de la Segunda Guerra Mundial. Estas capacidades están diseñadas para detectar, rastrear y neutralizar las amenazas antes de que impacten en el buque. Adentrémonos en ellas.
3.1. Detección y seguimiento
Radar de vigilancia de largo alcance: Un radar como el AN/SPY-1 (utilizado en el sistema Aegis) o el más moderno AN/SPY-6, proporciona una cobertura de 360 grados, permitiendo la detección y seguimiento simultáneo de múltiples amenazas desde diferentes direcciones.
Sistemas de sensores electro-ópticos e infrarrojos (EO/IR): Estos sistemas complementan al radar al proporcionar capacidades de detección pasiva, cruciales para identificar misiles furtivos o para operar en entornos de alta interferencia electrónica.
3.2. Contramedidas electrónicas (ECM)
Jammers y perturbadores electrónicos: El buque puede emplear sistemas de guerra electrónica para intentar desviar o desorientar los misiles entrantes. Esto podría incluir la emisión de señales de interferencia (jamming) para interrumpir los sistemas de guía de los misiles o el uso de señuelos electrónicos que crean falsos blancos para confundir los sistemas de radar del AShM.
3.3. Defensa antimisil de capa externa
Misiles antiaéreos de largo alcance: Misiles como el SM-6 (Standard Missile 6) en un sistema Aegis pueden ser lanzados para interceptar los misiles antibuque a larga distancia. Estos misiles tienen la capacidad de maniobrar a gran velocidad y de interceptar misiles entrantes incluso a altas velocidades (como los misiles supersónicos o hipersónicos).
Sistemas integrados de defensa en red: En un grupo de combate, como un grupo de ataque de portaaviones (CSG), otros buques también pueden contribuir a la defensa, lanzando misiles interceptores desde diferentes posiciones para aumentar la probabilidad de interceptación.
3.4. Defensa de capa media
Misiles de defensa de punto o corta distancia: Misiles como el RIM-162 ESSM (Evolved Sea Sparrow Missile) se encargan de la defensa en un rango medio, interceptando misiles que logran penetrar las defensas de largo alcance.
Cañones CIWS (Close-In Weapon Systems): Sistemas como el Phalanx CIWS o el Goalkeeper, que son cañones de alta cadencia de disparo, proporcionan la última línea de defensa, disparando ráfagas rápidas de proyectiles para destruir misiles entrantes a muy corta distancia.
3.5. Contramedidas activas
Señuelos lanzables (chaff y flare): El buque puede lanzar señuelos físicos como chaff (que dispersa tiras de metal para confundir el radar del misil) y flares (que emiten calor para desviar misiles guiados por infrarrojos).
Decoys Remolcados: Dispositivos como el Nulka, un señuelo activo lanzado que imita la firma radar del buque, pueden ser desplegados para atraer misiles lejos del barco real.
3.6. Maniobras evasivas:
Maniobras de alta velocidad: Aunque limitado por las capacidades físicas del buque, el capitán podría ordenar maniobras evasivas para intentar evitar que los misiles logren un impacto directo, especialmente en caso de que los misiles se acerquen desde diferentes ángulos.
3.7. Coordinación con la flota:
Defensa coordinada de grupo de combate: En un escenario de combate real, el buque capital estaría operando como parte de un grupo de combate, con otros buques y aeronaves de apoyo que proporcionarían una capa adicional de defensa. Por ejemplo, destructores o fragatas pueden actuar como piquetes de radar para interceptar misiles antes de que lleguen al buque capital.
Estas condiciones no están ampliamente difundidas entre todas las armadas del Mundo. Estos equipos se encuentran disponibles son en las armadas más modernas, incluso sólo en el US Navy, la cual es la mayor armada del Mundo. Es decir, un combatiente de superficie promedio en el Mundo quedaría sin poder emplear alguna de esas "capas" siendo altamente probable un impacto de un AShM sobre su estructura sin que mucho se pueda hacer.
3.8 Resumen
El capitán de un buque capital moderno tiene a su disposición una serie de capas de defensa que, cuando se utilizan de manera conjunta y efectiva, ofrecen una protección robusta contra ataques coordinados de misiles antibuque desde múltiples direcciones. La clave del éxito reside en la detección temprana, la rápida decisión para desplegar contramedidas, y la capacidad de coordinar todas estas defensas en un entorno de combate de alta intensidad. A pesar de las avanzadas defensas, un ataque masivo y bien coordinado de múltiples AShM sigue siendo una amenaza seria, subrayando la importancia de la redundancia y la preparación en la guerra moderna.
¿Cómo repeler un ataque multidireccional simultáneo? La mayoría de las veces, no puedes.
Perfiles de ataque del AShM Penguin y misil de crucero Tomahawks Nótense la posibilidad de realizar curvas y explorar blancos para detectar y optimizar el perfil de ataque.
4. Algoritmos de ataque simultáneo
Sin embargo, la misma digitalización puede llegar a elementos de defensa mucho más pequeños, para blanco muy puntuales, en escalas también precisamente definidas. Existen sistemas avanzados de dirección de misiles y drones diseñados para coordinar ataques desde múltiples direcciones de manera simultánea, lo que incrementa las posibilidades de éxito en la misión. Este tipo de ataques coordinados se emplea especialmente en operaciones contra objetivos fuertemente defendidos, donde el objetivo es saturar o superar las defensas enemigas.
4.1 Ejemplos de tales sistemas
Sistemas de enjambre (swarming):
Los drones pueden operar en enjambres, donde múltiples unidades trabajan de manera coordinada para atacar desde diferentes direcciones. Cada dron puede ser autónomo o controlado en red, compartiendo información en tiempo real para ajustar su ataque. El enjambre puede saturar las defensas enemigas al atacar simultáneamente desde varios ángulos. Uno puede recordar en una escena de Matrix Revolutions donde una evento así se observa. Y es sobrecogedor, por cierto.
Misiles de ataque coordinado:
Misiles como el Tomahawk Block IV o el AGM-158 JASSM tienen capacidades avanzadas de navegación y control que les permiten realizar ataques coordinados. Estos misiles pueden ser programados para seguir diferentes trayectorias y llegar al objetivo desde varias direcciones al mismo tiempo, lo que complica la defensa.
Ataques de saturación:
En este tipo de ataque, múltiples misiles son lanzados en un patrón diseñado para saturar las defensas enemigas. Los misiles pueden ser programados para atacar desde diferentes ángulos, alturas y velocidades, creando una situación en la que es difícil para los sistemas de defensa aérea interceptar todos los misiles entrantes.
Guerra de enjambre con drones de ataque:
En contextos modernos, los drones kamikaze o loitering munitions (municiones merodeadoras) como el Harop o el Switchblade pueden ser desplegados en masa. Estos drones pueden ser programados para atacar simultáneamente desde múltiples direcciones, lo que aumenta la probabilidad de que al menos uno logre alcanzar el objetivo.
Google trabaja con drones con inteligencia artificial que permitan discernir blancos y decidir ataques
Una discusión muy técnica de cómo se pueden programar enjambres de drones y coordinarlos para ataques y otras misiones
4.2 Principio operativo
La coordinación, sincronización y redundancia al ataque se combinan para forzar casi a un resultado implacable final: el blanco será alcanzado y destruido.
Coordinación y sincronización: Estos sistemas dependen en gran medida de una coordinación y sincronización precisa, generalmente mediante comunicaciones avanzadas y sistemas de navegación como GPS, INS (Sistema de Navegación Inercial), o incluso tecnologías emergentes como la inteligencia artificial.
Redundancia de ataque: Al atacar desde diferentes ángulos y direcciones, se reduce la probabilidad de que un solo sistema de defensa sea capaz de neutralizar todas las amenazas entrantes, asegurando así que al menos uno de los misiles o drones alcance el objetivo.
Estos enfoques son fundamentales en la guerra moderna, especialmente contra adversarios que cuentan con sistemas de defensa aérea avanzados.
5. Conclusión
La capacidad para ejecutar ataques multidireccionales simultáneos, ya sea con misiles antibuque, misiles de ataque a blancos terrestres o drones, representa un avance crucial en la guerra moderna. Esta estrategia se basa en la coordinación de múltiples dispositivos de ataque que convergen sobre un mismo objetivo desde diferentes direcciones al mismo tiempo. Su importancia radica en su capacidad para desbordar las defensas enemigas, minimizar la posibilidad de interceptación y maximizar el impacto del ataque. La importancia en el campo de batalla moderno puede enumerarse así:
Saturación de defensas: Un ataque desde múltiples direcciones complica significativamente la tarea de las defensas aéreas o antimisiles del adversario. Las defensas tradicionales están diseñadas para interceptar amenazas que provienen de una o pocas direcciones al mismo tiempo. Al enfrentarse a un ataque multidireccional, los sistemas defensivos pueden ser saturados, haciendo que algunas de las armas logren penetrar y alcanzar sus objetivos.
Reducción de la efectividad de los contramedidas: Las contramedidas electrónicas y de defensa activa, como sistemas de interferencia o misiles interceptores, son menos eficaces cuando deben lidiar con múltiples vectores de ataque simultáneos. Esta multiplicidad obliga al enemigo a dividir sus recursos, aumentando las posibilidades de que uno o más de los vectores de ataque tengan éxito.
Confusión y desorganización del enemigo: Un ataque multidireccional también puede generar confusión en las filas enemigas. La necesidad de responder a amenazas que provienen de diferentes direcciones puede desorganizar la defensa y dificultar la coordinación efectiva de la respuesta.
Destrucción de blancos fuertemente defendidos: Los objetivos bien defendidos, como instalaciones militares clave, centros de comando y control, o buques de guerra, requieren ataques con alto grado de precisión y potencia. La capacidad de golpear simultáneamente desde diferentes direcciones aumenta la probabilidad de que se puedan neutralizar o destruir estos blancos. Incluso si parte de la defensa logra interceptar algunos misiles o drones, otros pueden seguir su curso y alcanzar el objetivo.
Un ejemplo claro de la efectividad de esta táctica se observó en el ataque a las instalaciones petroleras de Aramco en Arabia Saudita en 2019. En este ataque, una combinación de misiles de crucero y drones fueron lanzados desde diferentes direcciones hacia las instalaciones. Este ataque coordinado saturó las defensas antiaéreas saudíes, que no pudieron interceptar todas las amenazas, resultando en daños significativos.
Otro ejemplo es el uso de drones suicidas (también conocidos como loitering munitions) en el conflicto de Nagorno-Karabaj en 2020, donde Azerbaiyán utilizó enjambres de drones para atacar simultáneamente desde diferentes ángulos, superando las defensas armenias y destruyendo posiciones fortificadas y sistemas antiaéreos.
Un tercer ejemplo, más cercano a nosotros, lo presenta el protocolo de asalto de posiciones a trincheras argentinas por parte de infantes de marina británicos (Royal Marines). Los asaltantes se distribuían de a tres cubriendo un amplio abánico frente a la posición argentina y realizaban la corrida. Los defensores al emerger recibían fuego de múltiples direcciones, lo que los confundía y daba ventaja al atacante.
Finalmente, la capacidad de ejecutar ataques multidireccionales simultáneos, ya sea mediante misiles, drones o cualquier otra fuerza o una combinación de ellas, es una herramienta poderosa en el arsenal militar moderno. Este tipo de ataques no solo aumenta la probabilidad de éxito contra objetivos bien defendidos, sino que también representa una evolución en las tácticas de guerra que busca maximizar el impacto y minimizar la capacidad de respuesta del adversario. A medida que la tecnología avanza y los sistemas de armas se vuelven más autónomos y precisos, es probable que esta táctica se convierta en un estándar en los conflictos futuros. Imagine el lector si el Comando de Aviación Naval hubiese contado con esa capacidad en sus Exocet lo inexorable que hubiese el ataque a un blanco altamente protegidos como los portaaviones del Task Force británica en Malvinas.
En el contexto global actual, las fuerzas armadas de todo el mundo se enfrentan a desafíos tecnológicos y estratégicos que demandan una constante actualización y adaptación de sus capacidades. Argentina, como parte de esta dinámica, no es la excepción. En particular, el desarrollo y uso de drones FPV (First-Person View) ha emergido como una tecnología clave en los conflictos modernos, siendo el conflicto en Ucrania un ejemplo reciente y relevante. Las Fuerzas Armadas Argentinas, comprometidas con la defensa nacional y la preservación de su integridad territorial, deben considerar la incorporación de estas tecnologías en su arsenal, y para ello es fundamental la asignación de fondos en el presupuesto público destinados a la creación de una planta de ensamble y producción de drones FPV. Los drones FPV son los fusiles Máuser del soldado de infantería de hace un siglo atrás.
Lecciones del conflicto en Ucrania
El uso de drones en el conflicto entre Rusia y Ucrania ha demostrado el valor de estas herramientas no solo en tareas de reconocimiento y vigilancia, sino también en operaciones ofensivas directas. Los drones FPV, que permiten a los operadores controlar el dispositivo en tiempo real con una visión en primera persona, han sido empleados tanto por las fuerzas ucranianas como por las rusas para ataques de precisión, reconocimiento avanzado y misiones de inteligencia. Estas plataformas han probado ser relativamente económicas en comparación con otros sistemas de armas, y su capacidad para atacar con precisión a objetivos estratégicos ha transformado la forma en que se conduce la guerra moderna.
La lección clave para Argentina y otros países es que los drones FPV, dada su versatilidad, eficiencia y costo relativamente bajo, pueden convertirse en un elemento central dentro de una estrategia de defensa moderna. No se requiere de un ejército inmenso ni de recursos ilimitados para desarrollar capacidades de ataque y defensa eficientes si se aprovechan tecnologías emergentes como los drones FPV. Esto resalta la urgencia de establecer una planta de producción local, que no solo impulse la capacidad tecnológica de las fuerzas armadas argentinas, sino que también genere empleo y desarrollo en sectores clave como la electrónica y la ingeniería.
Beneficios de una planta de producción nacional
La creación de una planta de ensamble y producción de drones FPV en Argentina tiene múltiples ventajas estratégicas. En primer lugar, permitiría la reducción de la dependencia de equipos y tecnologías importadas, brindando a las fuerzas armadas una mayor autonomía para desarrollar y adaptar estas herramientas a las necesidades específicas del país. En un entorno geopolítico cada vez más incierto, la capacidad de fabricar armamento de alta tecnología a nivel local es una ventaja significativa para cualquier nación.
Además, la inversión en infraestructura para la producción de drones contribuiría al desarrollo industrial y tecnológico del país, fomentando la innovación en campos como la robótica, inteligencia artificial y sistemas de comunicación. Al posicionarse como un referente regional en la producción de estos equipos, Argentina podría incluso acceder a mercados internacionales, exportando sus tecnologías a otras naciones de la región con necesidades similares.
Justificación presupuestaria
El financiamiento de esta planta de producción debe considerarse una inversión estratégica para el futuro de la defensa nacional. Dado el costo relativamente bajo de los drones FPV en comparación con otros sistemas de armas, su producción en serie podría optimizar el presupuesto militar argentino, permitiendo a las fuerzas armadas adquirir equipos avanzados a un costo accesible. Además, una planta de ensamblaje podría adaptar las tecnologías de drones a las características del terreno y los objetivos operacionales de Argentina, lo que sería un beneficio adicional en la planificación de misiones de defensa y seguridad nacional.
La guerra en Ucrania ha demostrado que las nuevas tecnologías, como los drones FPV, son esenciales para cualquier fuerza militar moderna. Para las Fuerzas Armadas Argentinas, la creación de una planta de ensamble y producción de drones no solo mejoraría su capacidad operativa, sino que también sería un motor para el desarrollo tecnológico y económico del país. Invertir en esta infraestructura es clave para asegurar una defensa eficiente y preparada ante los desafíos del futuro. Analicemos en este informe qué significa poner una planta de ensamble o fabricación de drones en vistas de la importancia estratégica de este recurso. Lamentablemente, todo apunta a llevarnos bien con China porque la enorme mayoría de los proveedores son de ese origen.
Inversión inicial requerida para una planta de producción de drones FPV
La inversión inicial para establecer una planta de fabricación de drones FPV varía dependiendo de la escala del proyecto, el nivel de automatización, y si decides fabricar todas las piezas internamente o subcontratar algunos componentes. A continuación, se presenta un desglose general de los costos aproximados:
1. Costos de infraestructura y equipamiento
Alquiler o compra de espacio: Dependiendo de la ubicación y el tamaño, el costo de alquiler o compra de un espacio adecuado para una planta de producción puede variar enormemente. Para un espacio de unos 500 a 1000 m² (suficiente para producción pequeña a mediana), los costos pueden estar entre:
Alquiler: $3,000 a $10,000 USD por mes.
Compra: $200,000 a $500,000 USD (dependiendo de la ubicación).
Renovaciones y adaptaciones: Costos asociados con la adecuación del espacio para la producción, como la instalación de ventilación adecuada para el trabajo con fibra de carbono, estaciones de soldadura y áreas de ensamblaje.
Costo estimado: $20,000 a $50,000 USD.
Debe tenerse en cuenta que debido a los recortes presupuestarios en distintos bases militares y fábricas existen amplios espacios en los cuales podría montarse un planta de ensamble de drones estilo ucraniana. Estos costos, en cierto sentido, pueden ser menores. Asimismo, debiera pensarse también en una fuerte interacción con el sector privado a fin de interactuar con aparatos completamente off-the-shelf que son simplemente adecuados al uso militar (especialmente cuando se les añade una carga explosiva).
2. Maquinaria y herramientas
Máquinas CNC para cortar fibra de carbono (ver apéndice abajo): Una máquina CNC de calidad media para cortar fibra de carbono puede costar entre:
Costo Estimado: $10,000 a $50,000 USD por unidad, dependiendo del tamaño y precisión.
Impresoras 3D: Dependiendo del número de impresoras 3D que necesites para piezas personalizadas (TPU y otros materiales), una buena impresora 3D costará entre:
Costo Estimado: $500 a $5,000 USD por impresora (puedes necesitar varias dependiendo del volumen de producción).
Estaciones de soldadura: Para la soldadura de controladores de vuelo, ESCs, motores, etc.
Costo estimado: $100 a $500 USD por estación de soldadura. Se necesitarán varias estaciones para un flujo continuo de producción.
Herramientas de ensamblaje y ESD (Protección contra Descargas Electrostáticas):
Costo estimado: $5,000 a $10,000 USD para todo el equipo de ensamblaje (destornilladores, pinzas, multímetros, etc.) y equipo de protección ESD.
Equipos de pruebas y calidad: Simuladores de vuelo, bancos de pruebas para motores y drones, medidores de potencia, etc.
Costo estimado: $5,000 a $15,000 USD.
3. Suministros y materias primas
Materiales iniciales (carbono, motores, controladores de vuelo, ESC, hélices, etc.): Para una producción inicial (primer lote de drones), necesitarás un stock adecuado de materiales y componentes.
Costo estimado: $20,000 a $50,000 USD para adquirir suficientes piezas y materias primas para los primeros lotes de producción.
4. Costos de Personal
Salarios de personal técnico y operativo: Dependiendo de la ubicación, los salarios pueden variar. Para un equipo inicial de ingenieros, técnicos y personal de ensamblaje, los costos salariales pueden ser:
Ingenieros de diseño y electrónica: $40,000 a $70,000 USD anuales por ingeniero.
Técnicos de ensamblaje: $20,000 a $40,000 USD anuales por trabajador.
Personal de calidad/pruebas: $25,000 a $50,000 USD anuales.
5. Desarrollo de marca y marketing
Marketing y comercio electrónico: Para crear una marca en el mercado FPV, es fundamental invertir en campañas de marketing digital, desarrollo de sitio web y presencia en redes sociales.
Costo estimado: $10,000 a $30,000 USD para campañas iniciales, desarrollo de tienda online y publicidad en redes sociales.
6. Licencias, certificaciones y cumplimiento
Certificaciones de seguridad y cumplimiento: Dependiendo del país, es posible que necesites certificaciones de seguridad (FCC, CE, RoHS) para los componentes electrónicos y los drones completos.
Costo estimado: $5,000 a $20,000 USD, dependiendo de la cantidad de certificaciones requeridas.
Permisos y licencias: Registros, permisos de operación, y otros requisitos locales.
Costo Estimado: $2,000 a $5,000 USD.
Resumen de inversión estimada
A continuación, se muestra un resumen de los costos aproximados para la inversión inicial:
Tiempo necesario para comenzar la producción
El tiempo requerido para comenzar la producción depende de varios factores, como la contratación de personal, la adquisición de maquinaria, y la adaptación del espacio de producción. Un cronograma típico puede verse así:
1. Diseño y planificación (1-3 meses)
Finalización de diseños de drones y planes de producción.
Investigación y adquisición de proveedores de materiales y componentes.
Cumplimiento con las normativas locales y obtención de licencias.
2. Instalación de maquinaria y configuración (2-4 meses)m
Compra e instalación de máquinas CNC, impresoras 3D y herramientas de ensamblaje.
Instalación de estaciones de trabajo y equipos de pruebas.
Configuración del sistema de inventario y gestión de producción.
3. Contratación y capacitación (1-3 meses)
Contratación de ingenieros, técnicos de ensamblaje y personal de calidad.
Capacitación de los empleados en el uso de maquinaria y procesos de fabricación.
4. Prototipado y pruebas (1-2 meses)
Prototipado de los primeros drones y pruebas de calidad.
Ajustes en los procesos de producción según los resultados de las pruebas.
5. Producción Inicial (1-2 meses)
Comienzo de la producción a pequeña escala para asegurar que todos los procesos estén funcionando correctamente.
Verificación final de calidad y embalaje para el lanzamiento al mercado.
Cronograma estimado total: 6 a 12 meses
Este período incluye la fase de planificación, instalación, contratación y la producción inicial. Con una buena gestión, puedes estar listo para comenzar la producción en aproximadamente 6 meses, aunque esto puede variar según la complejidad del proyecto y la rapidez con que se adquieran las herramientas y el personal.
¿Cómo producir drones FPV?
1. Descripción básica para establecer una planta de producción de drones FPV
Planificación y diseño: Define el alcance de la producción de drones FPV: ¿qué tipos de drones fabricarás (drones de carreras, drones de freestyle, cinewhoops, drones de largo alcance)? Considera qué partes serán subcontratadas y cuáles se fabricarán internamente.
Diseño del producto y prototipado: Desarrolla o adquiere archivos de diseño para los marcos, la electrónica (controladores de vuelo, ESC, etc.), y otros componentes. Comienza con modelos CAD y prototipa varias iteraciones para asegurar el rendimiento.
Investigación de mercado y cumplimiento: Investiga tu mercado objetivo (aficionados, profesionales, creadores de contenido) y asegúrate de cumplir con las regulaciones locales e internacionales de aviación y fabricación electrónica, como las certificaciones de la FCC (Comisión Federal de Comunicaciones) o CE.
2. Proveedores clave y suministradores
Necesitarás identificar proveedores para varios componentes y servicios en la fabricación de drones FPV:
Componentes principales
Marcos: Los marcos generalmente están hechos de fibra de carbono. Busca proveedores especializados en corte preciso de fibra de carbono.
Componentes impresos en 3D: Para piezas personalizadas, necesitarás una configuración de impresión 3D o un proveedor externo para plásticos flexibles como TPU.
El personal necesario variará según la escala de la operación y la cantidad de automatización. A continuación, algunos de los roles esenciales para una planta de fabricación de drones FPV:
Personal técnico y de ingeniería
Ingenieros de diseño: Responsables de crear y probar diseños de drones utilizando software CAD y trabajar en estrecha colaboración con producción para optimizar diseños para la fabricación.
Ingenieros mecánicos: Se centran en la selección de materiales, diseño de marcos y aseguramiento de la durabilidad.
Ingenieros eléctricos: Diseñan e integran controladores de vuelo, ESC, placas de distribución de energía (PDB) y garantizan que todos los componentes electrónicos funcionen eficientemente.
Técnicos de control de calidad/pruebas: Especialistas en probar cada dron para el rendimiento, durabilidad y fiabilidad antes de su envío.
Trabajadores de fabricación y ensamblaje
Técnicos de fabricación de marcos: Con habilidades para operar máquinas CNC para corte de fibra de carbono, o gestionar operaciones de impresión 3D.
Técnicos de ensamblaje: Personal capacitado para ensamblar drones, soldar componentes electrónicos, instalar motores e integrar sistemas FPV.
Personal de embalaje y envío: Responsables de empaquetar de forma segura los productos terminados y gestionar la logística.
Personal de soporte
Especialistas en compras: Encargados de adquirir materiales, negociar con proveedores y mantener las cadenas de suministro.
Gerentes de logística y almacén: Manejan la coordinación de envíos, inventario y gestión de la cadena de suministro.
Equipo de marketing y ventas: Ayuda a desarrollar la presencia de la marca en el mercado FPV, gestiona las ventas directas al consumidor y supervisa el servicio al cliente.
4. Equipo y herramientas
Máquinas CNC: Para cortar fibra de carbono, aluminio u otros materiales utilizados en los marcos.
Impresoras 3D: Para piezas personalizadas como soportes para cámaras u otros componentes flexibles.
Estaciones de soldadura: Para ensamblar manualmente componentes electrónicos como motores, controladores de vuelo y VTX.
Herramientas de línea de ensamblaje: Destornilladores de precisión, llaves, alicates y multímetros para el control de calidad.
Protección ESD: Equipo antiestático para proteger los componentes electrónicos sensibles de las descargas electrostáticas.
5. Flujo de trabajo de fabricación
Fase de diseño: Los ingenieros diseñan el dron en software CAD, simulan pruebas de esfuerzo e imprimen prototipos con impresoras 3D.
Abastecimiento de componentes: Identifica proveedores confiables y desarrolla asociaciones para asegurar un flujo constante de partes esenciales.
Producción de marcos: Utiliza máquinas CNC para cortar las piezas de fibra de carbono para los marcos.
Montaje electrónico: Instalación y soldadura del FC, los ESC, los motores y el cableado. Prueba cada unidad para asegurar la calidad.
Integración del sistema FPV: Instalación de la cámara FPV, el VTX y las antenas, asegurando la compatibilidad con diferentes gafas y receptores.
Pruebas finales: Realiza pruebas de vuelo y de resistencia para asegurar la durabilidad y el rendimiento.
Control de calidad y empaque: Inspecciona el producto final en busca de defectos, empaquétalo de manera segura y organiza el envío.
6. Cumplimiento y certificaciones
Normas de seguridad: Cumple con las normas de seguridad locales e internacionales como CE (Europa) o FCC (EE. UU.).
Cumplimiento ambiental: Asegúrate de que tus procesos de producción cumplan con las regulaciones ambientales, especialmente en lo que respecta al polvo de fibra de carbono y la eliminación de desechos electrónicos.
Regulaciones de drones: Asegúrate de que los drones cumplan con las regulaciones de las autoridades de aviación, como la FAA en Estados Unidos o EASA en Europa, particularmente en cuanto a límites de peso y transmisión FPV.
7. Costos estimados
Costos de Instalación Inicial:
Espacio de fábrica: Alquilar o comprar un almacén para fabricación y ensamblaje, generalmente con techos altos y buena ventilación para la producción de fibra de carbono.
Máquinas CNC e Impresoras 3D: Entre $50,000 y $200,000 dependiendo del número y tamaño de las máquinas.
Estaciones de soldadura, herramientas y consumibles: Aproximadamente $10,000 a $20,000.
Seguro de responsabilidad: Seguro de fabricación para cubrir a los trabajadores y productos.
Costos continuos:
Adquisición de materiales: Fibra de carbono, motores, componentes electrónicos y accesorios.
Costos laborales: Salarios para el personal técnico, los trabajadores de ensamblaje y el personal de soporte.
Investigación y desarrollo: Mejoras continuas del producto y desarrollo de nuevos modelos.
8. Consideraciones clave para el sector civil
Escalabilidad: Se comienza a pequeña escala produciendo solo algunos tipos de drones y se expande gradualmente a diferentes categorías (por ejemplo, carreras, cinewhoop, largo alcance).
Asociaciones: Forma asociaciones estratégicas con comunidades FPV, influencers y minoristas como GetFPV o RaceDayQuads.
Marketing y distribución: Ten una sólida presencia en línea y una estrategia de comercio electrónico directo al consumidor. Usa las redes sociales, YouTube y foros FPV para aumentar la conciencia de marca.
Apéndice: ¿Qué es un máquina CNC?
Una máquina CNC (Control Numérico por Computadora, por sus siglas en inglés) es un tipo de máquina herramienta que opera bajo el control de una computadora. CNC permite automatizar el proceso de fabricación mediante instrucciones programadas que controlan los movimientos de la máquina para cortar, esculpir o modificar materiales como metal, madera, plásticos o, en el caso de drones FPV, fibra de carbono.
Características Clave de las Máquinas CNC
Control Computarizado: Las máquinas CNC ejecutan instrucciones preprogramadas a través de un software, que le indica a la máquina cómo y dónde cortar o esculpir el material.
Alta Precisión: Gracias al control computarizado, las máquinas CNC son extremadamente precisas y pueden repetir procesos con consistencia, algo esencial en la fabricación de piezas complejas como marcos de drones.
Versatilidad: Estas máquinas pueden trabajar con una amplia gama de materiales, incluidos metales, madera, plásticos y fibra de carbono, que es clave en la fabricación de drones FPV por su ligereza y resistencia.
Automatización: Una vez que se configura el programa de fabricación, la máquina puede operar de manera autónoma con supervisión mínima, lo que reduce la necesidad de intervención manual y el error humano.
Aplicaciones en la Producción de Drones FPV
En la fabricación de drones FPV, las máquinas CNC se utilizan principalmente para:
Corte de Fibra de Carbono: La fibra de carbono se utiliza para los marcos de los drones debido a su alta relación resistencia-peso. Las máquinas CNC cortan las láminas de fibra de carbono con gran precisión para formar los brazos y las placas de los drones.
Producción de Piezas Metálicas o Plásticas: Además de la fibra de carbono, las CNC pueden fabricar piezas adicionales que requieran materiales metálicos (soportes, tornillos) o plásticos (partes no estructurales).
Tipos Comunes de Máquinas CNC
Fresadoras CNC: Utilizan fresas (herramientas de corte giratorias) para remover material y dar forma a la pieza, muy usadas para trabajar metales o plásticos.
Cortadoras CNC por Láser o Agua: Utilizan un láser o un chorro de agua de alta presión para cortar materiales como la fibra de carbono o metales finos.
Tornos CNC: Se usan para piezas que necesitan ser torneadas o trabajadas en formas cilíndricas o esféricas.
Ventajas de las Máquinas CNC
Precisión: La capacidad de hacer cortes y movimientos extremadamente precisos es una ventaja clave, especialmente en la fabricación de componentes delicados y detallados como los marcos de drones FPV.
Eficiencia: Permite producir grandes cantidades de piezas de forma eficiente y rápida, mejorando el rendimiento de la planta de producción.
Repetitividad: Puede hacer exactamente el mismo proceso una y otra vez, asegurando consistencia en todas las piezas fabricadas.
Ejemplos de Máquinas CNC para Fabricación de Drones
Shapeoko CNC: Popular entre fabricantes pequeños y medianos por su capacidad de trabajar con precisión en diversos materiales.
Tormach CNC: Conocida por ofrecer máquinas CNC de alta precisión para pequeños talleres de fabricación.
En resumen, una máquina CNC es esencial en la fabricación de drones FPV debido a su capacidad para crear piezas de alta precisión y durabilidad a partir de materiales como la fibra de carbono.
Según el South China Morning Post, China habría logrado probar un nuevo avión que combina un caza furtivo con dos drones desmontables. Este diseño innovador se demostró en un aeropuerto ubicado en el extremo sur del desierto de Mu Us en Ningxia, noroeste de China. Sin embargo, no se han obtenido fotografías de este avión.
Imagen ilustrativa generada por IA que muestra un avión de combate chino trabajando en cooperación con vehículos aéreos no tripulados. (Fuente de la imagen: Army Recognition)
El caza furtivo, equipado con un turboventilador bimotor y un fuselaje integrado con alas en delta, ejecutó una maniobra durante el vuelo de prueba. Segmentos de cada ala se separaron del avión principal, transformándose en dos drones de "alas voladoras" propulsados por ventiladores eléctricos. Esta información debe tomarse con precaución ya que aún no se han compartido imágenes de este evento.
Sin embargo, los medios chinos siguen explicando el desarrollo de las pruebas: "A pesar de una breve sacudida provocada por la repentina reducción de la superficie del ala y el desplazamiento del centro de gravedad del avión, tanto el caza como los drones se estabilizaron rápidamente, lo que demuestra la eficacia del diseño aerodinámico. y algoritmos de control automático."
Según Du Xin, ingeniero senior del Instituto de Tecnología Aeronáutica del Centro de Investigación y Desarrollo Aerodinámico de China (CARDC), este exitoso vuelo de prueba valida un nuevo concepto para el caza de próxima generación de la Fuerza Aérea China. El diseño representa un modo avanzado de combate colaborativo tripulado/no tripulado, integrando múltiples aviones con diferentes funciones para un vuelo coordinado.
En un artículo publicado el 29 de mayo en la revista china Advances in Aeronautical Science and Engineering, Du y sus colegas explicaron que este enfoque aborda cuestiones como la discrepancia de velocidad y la incompatibilidad de alcance entre aviones tripulados y no tripulados, logrando ventajas complementarias.
Yang Wei, el diseñador jefe del avión J-20, mencionó que los futuros cazas furtivos de China se centrarán en el combate junto con los drones. El J-20, el principal caza furtivo de China, está siendo sometido a pruebas para una variante biplaza para mejorar las capacidades de interacción con drones.
El diseño del caza furtivo de próxima generación incluye dos drones conectados al borde de salida de las alas delta del avión. A diferencia de intentos anteriores de fijar aviones a las puntas de las alas, el equipo de Du adoptó una "configuración de acoplamiento en el borde trasero", conectando los bordes de ataque de los drones con el borde de salida del ala principal. Esta configuración permite un vuelo más estable pero plantea desafíos importantes debido a los cambios drásticos en el centro de gravedad y el punto focal de la aeronave durante la separación.
El equipo de Du desarrolló un nuevo algoritmo para analizar con precisión diversas perturbaciones, incluidos los cambios de viento, durante la separación. Tanto el avión como los drones utilizan la computadora de control de vuelo FCC-100 de la Universidad Politécnica Northwestern, capaz de realizar cálculos complejos y un control confiable.
La fecha del vuelo de prueba sigue siendo clasificada, pero, según se informa, el proyecto demuestra avances en la estabilidad y el control de las aeronaves, allanando el camino para aplicaciones del mundo real. Los científicos chinos también están explorando nuevas tecnologías, como equipos furtivos de plasma y flujo de aire para futuros cazas. Sin embargo, como no se ha hecho pública ninguna comunicación oficial sobre la prueba, es prudente mantener la cautela sobre la veracidad de esta información, y habrá que esperar a posible información adicional por parte de las autoridades chinas.
Drones: "Un cambio de juego" Fuerza Aérea de Indonesia (2)
UCAV MALE TAI Anka (foto: DefenseNews)
Creación de una fuerza profesional de drones de la Fuerza Aérea de Indonesia
La Fuerza Aérea de Indonesia necesita adaptarse a la tecnología aeroespacial moderna para protegerse de cualquier amenaza potencial que enfrentará en el futuro.
El plan para añadir drones, según el mariscal del TNI del KSAU, Mohammad Tonny Harjono, fortalecerá la flota de defensa aérea que actualmente pertenece al TNI AU.
Además del CH-4 Rainbow y ANKA, según Tonny, Indonesia planea traer drones Bayraktar.
Bayraktar es un dron MASCULINO fabricado por Baykar Türkiye, que también fue utilizado por el ejército ucraniano a la hora de afrontar la guerra contra Rusia.
"Por favor, oren por su bendición, la Fuerza Aérea se convertirá en una Fuerza Aérea que se adaptará a los avances tecnológicos y a los desarrollos en situaciones nacionales, regionales y globales", dijo Tonny después del 78º aniversario de la Fuerza Aérea de Indonesia en el Campo Aeroespacial AAU. Yogyakarta, según informó Antara.
El piloto del F-16 Fighting Falcon que estuvo involucrado en el incidente de Bawean agregó que estos tres tipos de aviones no tripulados utilizan tecnología satelital. Por lo tanto, se espera que pueda soportar combates más allá del alcance visual (BVR) o combates aéreos de largo alcance.
"Podemos volar desde fuera del área que queremos monitorear, por ejemplo en Papúa o cualquier otra área, podemos volar desde fuera de Papúa", dijo el piloto de combate con el distintivo de llamada "Racoon".
Sala de control de drones Anka (foto: TUSAS)
En una entrevista especial con Kompas.com, Agung reveló que la tecnología de drones en los últimos cinco años, como los utilizados en la guerra entre Rusia y Ucrania y el contraataque de Irán contra Israel, ha experimentado un desarrollo muy rápido desde el punto de vista tecnológico.
Anteriormente los sistemas de control de drones eran muy caros, actualmente existen muchos sistemas de control utilizados para drones a precios más bajos, que pueden usarse para drones con especificaciones militares.
"Antes era un piloto automático, para estudios, para volar durante una o dos horas, ahora se puede utilizar para volar drones durante 5 horas, 6 horas, transportar explosivos, cruzar países, cruzar montañas, incluso se puede configurar para sigue el terreno, vuela bajo de acuerdo con "sigue el contorno, por lo que puede atacar desde la distancia y puede pasar libremente a través de la captura del radar", dijo Agung en el programa BRIGADE Podcast que se transmitió en el canal de YouTube Kompas.com, el miércoles (29/5 /2024).
El ex piloto del F-5 Tiger con el distintivo de llamada "Sharky" añadió que Indonesia, que es un gran país archipiélago, se beneficiaría del fortalecimiento de su flota de drones para vigilancia.
Explicó que como país con una superficie de 1.904.569 kilómetros cuadrados, el desafío que enfrenta actualmente Indonesia está en el aspecto de la supervisión.
Muchos casos de delitos que ocurren en zonas fronterizas no son monitoreados directamente, a pesar de que los esfuerzos de monitoreo se han llevado a cabo las 24 horas del día utilizando radares y aviones de vigilancia.
Los casos de delitos incluyen, por ejemplo, pesca ilegal, minería ilegal y contrabando ilegal de bienes, ya sean drogas u otros bienes que tienen valor económico pero que han sido producidos localmente. Esto tiene un impacto en la economía indonesia.
UCAV Baykar Bayraktar TB2 MALE (foto: Baykar)
"Necesitamos vigilancia las 24 horas. El aire se puede controlar mediante radar si llega un avión. El mar también tiene radar. Sin embargo, (la vigilancia por radar) todavía es limitada porque los operadores son humanos", afirmó.
Con los drones, las labores de seguimiento se pueden llevar a cabo de forma más óptima. Porque, además de ser controlados manualmente por el piloto, los drones también se pueden controlar de forma autónoma con ayuda de la IA.
Sin embargo, la IA que funciona aquí permanece bajo el control total del piloto que opera el dron desde la sala de control. Esto es importante para minimizar la aparición de errores cuando la IA comienza a analizar las amenazas potenciales encontradas al realizar la vigilancia de objetivos específicos.
"Con la IA, puede representar a los humanos para determinar hasta qué punto ha violado, perturbado, acosado, para que puedan tomar otras acciones, sólo después de eso preguntar a los humanos, qué estoy haciendo", dijo.
"Pero antes de eso, ya podía decir por sus movimientos, por su tiempo de caminata, su velocidad, los movimientos de las personas dentro, que esto era sospechoso. Después de eso, se verificó que esto era sospechoso, no había razón para preguntar". Sólo entonces los seres humanos desempeñaron un papel", añadió.
Otra ventaja del uso de drones, según Sharky, es que no requieren una pista larga para despegar. Esta condición es ventajosa si en cualquier momento se detecta una amenaza directa, los drones pueden desempeñar un papel primero en la realización de reconocimiento, interceptación e incluso resistencia, antes de que los aviones de combate tripulados se dirijan a la ubicación del objetivo.
"Si resulta que se le considera muy peligroso y es una amenaza directa, por ejemplo un avión no tripulado que viaja a una velocidad tan recta hacia la capital, bueno, ¿qué estás haciendo? Bueno, podemos tomar medidas de inmediato. Acciones de acuerdo Se tomarán los procedimientos y eso es todo, los drones serán más rápidos", dijo.
Simulador de drones Bayraktar TB2(foto: Baykar)
"Incluso es posible que, antes de que el humano despegue, este dron pueda ser despegado primero para verificarlo. Porque (el dron) puede (volar) en cualquier momento. No es necesario que la gente se levante, corra, instale esto. (chaqueta del piloto). (El dron) inmediatamente arranca el motor, se enciende el GPS, luego se prepara el sistema y puede ventilar primero”, agregó.
En otro ejemplo, según Agung, las ventajas de los drones que vale la pena considerar residen en el proceso de producción de pilotos, en comparación con los aviones de combate.
Según él, si se trata de una misión de carácter cuantitativo, que requiere aviones y pilotos a gran escala, sin duda será un desafío en sí mismo si hay que producir muchos pilotos de combate en poco tiempo.
Básicamente, dijo Agung, que un piloto sea probado o no para llevar a cabo una misión depende de las horas de vuelo que haya acumulado.
También se requiere que un piloto tenga una alta inteligencia, porque debe poder pensar y tomar decisiones rápidamente, ya sea cuando lleva a cabo una misión independiente o cuando trabaja en equipo.
Sin embargo, los pilotos de aviones de combate también requieren altos niveles de capacidad física para adaptarse. Porque esto afectará su fuerza cuando enfrentan presión mientras vuelan y también se correlaciona con sus habilidades mentales y de pensamiento.
"Ahora bien, para los aviones no tripulados no existe una carga física más profunda. No hay carga. Psicológicamente, (realmente) tiene que ser fuerte, (también) en términos de habilidades. Sin embargo, sus habilidades se pueden (entrenar) usando un simulador, " él dijo.
Los escuadrones aéreos de drones nº 53 y 54 se formarán en un futuro próximo en Tarakan y Timika para complementar los 2 escuadrones existentes (imagen: especial)
"Como resultado, conseguir un piloto para un avión no tripulado es relativamente más fácil. Porque tal vez sea una cuestión de aptitud física, la adaptación física se reduce. De hecho, la mayor carga a la hora de conseguir un piloto de combate es la adaptación física", afirmó.
Sharky enfatizó que el piloto tiene un papel importante en el éxito de las operaciones con drones. Aunque los drones ahora están equipados con IA para poder moverse de forma autónoma, el proceso de toma de decisiones debe seguir estando en manos del piloto.
Esto es necesario para que los drones sigan funcionando como deberían, es decir, como herramienta de vigilancia, defensa nacional y para ayudar a neutralizar cualquier amenaza que se presente. En lugar de convertirse en una máquina de matar para civiles inocentes debido a errores en el proceso de toma de decisiones.
Como el ataque con drones autónomos ocurrido durante la guerra civil en Libia en 2020.
Así se sabe a partir del informe de un panel de expertos independientes encargado por la ONU para investigar la guerra de Libia, según informó el New York Times el 3 de junio de 2021.
El convoy logístico de la Fuerza Afiliada a Haftar (HAF) fue perseguido y atacado remotamente por el dron autónomo STM Kargu-2, después de ser rechazado por fuerzas militares que avanzaban por orden del Primer Ministro Faiez Serraj.
Los sistemas de armas letales autónomos están programados para atacar objetivos sin requerir conectividad de datos entre los operadores y las municiones. Básicamente, el dron está equipado con capacidades de "disparar, olvidar y encontrar" en misiones reales.