Mostrando entradas con la etiqueta prototipo. Mostrar todas las entradas
Mostrando entradas con la etiqueta prototipo. Mostrar todas las entradas

domingo, 23 de marzo de 2025

Caza pesado: Prototipo Savoia-Marchetti SM.92

Savoia-Marchetti SM.92 – El P-38 italiano

Nathan Cluett || Plane Historia


El Savoia-Marchetti SM.92 destaca por ser un avión único y fascinante. Desarrollado durante las últimas etapas de la Segunda Guerra Mundial por la empresa aeronáutica italiana Savoia-Marchetti, el SM.92 fue un caza experimental que exhibió un diseño e ingeniería innovadores. Su desarrollo fue parte de los esfuerzos de Italia por crear aviones superiores para competir con los cazas avanzados de los Aliados.

El SM.92

El SM.92 fue diseñado por el reconocido ingeniero Alessandro Marchetti. Era un avión bimotor de doble mástil, un diseño bastante radical para su época. La configuración de doble mástil es similar a la del P-38 Lightning de Lockheed. Este diseño ofrecía varias ventajas, entre ellas una mejor visibilidad para el piloto y una ráfaga concentrada de potencia de fuego.


El diseño de Marchetti, aunque inusual, no era completamente radical.

Como motor, el SM.92 utilizaba dos motores Fiat RA.1050 Tifone. Estos motores fueron elegidos por su fiabilidad y potencia, con el objetivo de dotar al SM.92 de una velocidad y una maniobrabilidad impresionantes.

Sin embargo, el proceso de desarrollo enfrentó varios desafíos. La Segunda Guerra Mundial fue un período de agitación y escasez de recursos, lo que inevitablemente afectó el progreso del desarrollo del SM.92. Además, la cambiante situación política de Italia, en particular el Armisticio de Cassibile en septiembre de 1943, complicó aún más el proyecto. Este armisticio llevó a Italia a cambiar de bando en el conflicto, lo que creó un entorno caótico para el desarrollo y las pruebas continuas.

A pesar de estos desafíos, el SM.92 llegó a la etapa de prototipo y realizó su primer vuelo a fines de 1943. Las pruebas de vuelo iniciales mostraron resultados prometedores, indicando que el avión tenía buena estabilidad, control y un rendimiento potencialmente competitivo. Sin embargo, debido a los desafíos antes mencionados, el desarrollo del SM.92 nunca se completó por completo y sus capacidades no se probaron exhaustivamente.


El SM.92 debía estar equipado con un formidable conjunto de armas, incluidos tres cañones MG 151 de 20 mm y dos ametralladoras Breda-SAFAT de 12,7 mm, todos concentrados en el morro.

Marchetti

Alessandro Marchetti fue un influyente ingeniero y diseñador aeronáutico italiano, reconocido por sus importantes contribuciones al campo de la aviación. Nacido el 4 de mayo de 1884 en Sesto Fiorentino, Italia, la carrera de Marchetti abarcó una era crucial en la historia de la aviación, siendo testigo de la transición de las máquinas voladoras rudimentarias a las aeronaves avanzadas.

El camino de Marchetti en la aviación comenzó con su formación, donde desarrolló una sólida base en principios de ingeniería. Su pasión y habilidad para el diseño de aeronaves se hicieron evidentes rápidamente. En 1922, se unió a la SIAI (Società Idrovolanti Alta Italia), que más tarde se conocería como Savoia-Marchetti, una empresa que se convertiría en sinónimo de la aviación italiana.


Alessandro Marchetti

En Savoia-Marchetti, el talento de Marchetti floreció. Fue fundamental en el diseño de varios aviones de éxito, en particular el S.55, un hidroavión de doble casco que se hizo famoso por sus vuelos transatlánticos. Este avión fue un testimonio del enfoque innovador de Marchetti en el diseño, que combinaba la practicidad con la audacia de la ingeniería.

Filosofía

La filosofía de diseño de Marchetti a menudo giraba en torno a la versatilidad y el rendimiento. Un ejemplo de ello es su trabajo en el SM.79, un bombardero trimotor que se convirtió en uno de los aviones italianos más conocidos de la Segunda Guerra Mundial. El SM.79 era lo suficientemente versátil como para ser utilizado en múltiples funciones, incluso como bombardero torpedero, y era apreciado por su velocidad y agilidad, algo inusual para un bombardero de su época.

A lo largo de su carrera, las contribuciones de Marchetti no se limitaron a diseños de aeronaves individuales. Desempeñó un papel fundamental en el avance del campo de la ingeniería aeronáutica en Italia, ampliando los límites de lo posible en la tecnología de la aviación. Su trabajo influyó en varios otros diseños, incluido el SM.92.

A pesar de los desafíos que supuso trabajar durante dos guerras mundiales, la dedicación de Marchetti a su oficio nunca disminuyó. Su trabajo siguió evolucionando y demostró una profunda comprensión de la dinámica cambiante de la aviación y la guerra.


Rendimiento del vuelo

Se esperaba que los dos motores Fiat RA.1050 Tifone, versiones de fabricación italiana del motor alemán Daimler-Benz DB 605, otorgaran al SM.92 una alta velocidad máxima y un buen rendimiento en ascenso. Estos motores estaban entre los más potentes disponibles en la industria aeronáutica italiana en ese momento, y su inclusión en el diseño del SM.92 fue una elección estratégica destinada a garantizar que el avión pudiera competir eficazmente con los cazas aliados contemporáneos.


Un primer plano del motor italiano DB605.

Las pruebas de vuelo iniciales, que comenzaron a fines de 1943, indicaron que el SM.92 tenía características de rendimiento prometedoras. Los informes sugerían que el avión exhibía buena estabilidad y control, factores importantes para un avión de combate. Los pilotos notaron que el SM.92 respondía a las órdenes de control, un aspecto crucial en escenarios de combate aéreo.

Sin embargo, las capacidades de rendimiento integrales del SM.92, como su velocidad máxima, techo de servicio, velocidad de ascenso y maniobrabilidad en diversas condiciones de combate, no fueron documentadas completamente.

La guerra en curso, las limitaciones de recursos y las cambiantes circunstancias políticas de Italia, incluido el Armisticio de Cassibile, obstaculizaron significativamente las pruebas y el desarrollo a gran escala. En consecuencia, el rendimiento del SM.92 en situaciones de combate quedó en gran parte sin probar y en el ámbito de las especulaciones.


Debido a las dificultades de la guerra, el SM.92 nunca fue probado completamente.

Desafíos y limitaciones

El diseño de doble fuselaje del Savoia-Marchetti SM.92, si bien era innovador y prometedor en varios aspectos, también presentaba un conjunto único de desafíos y limitaciones. Este diseño, que presentaba dos fuselajes separados (bóvedas) con una góndola central para el piloto y el armamento, fue un enfoque distintivo para la construcción de aviones de combate durante la Segunda Guerra Mundial.

Uno de los principales desafíos de cualquier diseño de doble mástil está relacionado con la aerodinámica. La presencia de dos mástiles creaba una resistencia adicional que podía reducir la velocidad máxima y la agilidad del avión, factores críticos para un avión de combate.


El diseño de doble brazo tenía importantes ventajas, pero también bastantes inconvenientes.

Para gestionar esta resistencia se requirió un cuidadoso diseño aerodinámico e ingeniería para garantizar que las ventajas de rendimiento de la configuración de doble brazo no se vieran anuladas por una mayor resistencia del aire.

La configuración de doble brazo también introdujo una mayor complejidad estructural. La conexión de los dos brazos con la góndola central y el conjunto del ala requirió una estructura robusta y compleja para mantener la integridad de la aeronave.

Esta complejidad no sólo aumentaba el peso de la aeronave, sino que también planteaba desafíos en términos de fabricación y mantenimiento. Garantizar la resistencia estructural manteniendo el peso al mínimo fue un importante desafío de ingeniería.

Otro desafío fue la sincronización de los dos motores montados en brazos separados. El rendimiento y la respuesta del avión dependían en gran medida del funcionamiento preciso de ambos motores. Cualquier discrepancia en la potencia o la respuesta del motor podía provocar problemas de manejo, lo que dificultaba el control del avión, especialmente en situaciones de combate o durante maniobras de alto rendimiento.


El SM.92 era más grande que el P-38. Ya era un caza bastante grande.

Camino a ninguna parte

El Savoia-Marchetti SM.92, aunque es un capítulo menos conocido de la aviación de la Segunda Guerra Mundial, representa una interesante combinación de innovación y ambición en el diseño de aeronaves. Su desarrollo durante un período tumultuoso de la historia italiana refleja los desafíos a los que se enfrentaron los ingenieros y diseñadores en tiempos de guerra.

Hoy en día, el SM.92 es recordado por los entusiastas de la aviación y los historiadores como un símbolo de las avanzadas capacidades de ingeniería de Italia y como un fascinante "lo que podría haber sido" en la historia de la aviación militar.

sábado, 22 de marzo de 2025

PGM: El bombardero de tres pisos

 

El bombardero R.I. de tres pisos de la Primera Guerra Mundial

Plane Historia


La Primera Guerra Mundial fue una época de gran experimentación para las aeronaves, lo que resultó en algunos diseños extraños. El R.I. es un ejemplo perfecto, con su gran tamaño y su distintivo fuselaje de tres pisos.

Fue diseñado como un primer bombardero estratégico de largo alcance cuando el concepto aún no estaba completamente establecido. Por lo tanto, no podemos culpar a los diseñadores por semejante creación. Sin embargo, sí podemos disfrutar de sus hilarantes proporciones desde la comodidad del futuro.

En lugar de alargarse, el R.I. creció hacia arriba, apilando sus diversos compartimentos uno encima del otro hasta que su fuselaje fue más alto que la cola de un B-17.

Antecedentes

El Linke-Hofmann R.I. fue desarrollado durante el intenso período de la Primera Guerra Mundial, una época marcada por rápidos avances en tecnología y estrategia militar. En particular, el potencial de los aviones para sortear las defensas tradicionales y golpear el corazón del territorio enemigo, una táctica que hoy conocemos como bombardeo estratégico.

A medida que el concepto de bombardeo estratégico comenzó a tomar forma, Alemania buscó aviones capaces de ejecutar estas misiones de bombardeo de largo alcance de manera efectiva. Debían ser aeronaves muy grandes, conocidas como Riesenflugzeug ("aviones gigantes"), para poder transportar suficiente combustible y bombas para la misión.

Esto resultó en varios diseños que incluyeron algunos de los aviones más grandes del mundo en ese momento, como el Siemens-Schuckert R.VIII. La envergadura de esa aeronave en particular permanecería imbatida durante 16 años.

El enorme Siemens-Schuckert R.VIII.

En 1917, Linke-Hofmann se convirtió en otro fabricante que competía por producir un Riesenflugzeug capaz de ganar la guerra. Originalmente, la empresa fabricaba locomotoras y equipos ferroviarios, pero las necesidades de la guerra la llevaron a incursionar en este nuevo campo.

Encargada de producir un bombardero de largo alcance, la compañía emprendió el desarrollo del R.I. La aeronave fue diseñada para ser un bombardero grande y potente, capaz de transportar cargas sustanciales a grandes distancias.

Diseño del R.I.

El diseño del Linke-Hofmann R.I. era muy inusual, especialmente en comparación con diseños más modernos, ya que presentaba motores colocados internamente y un fuselaje de tres pisos. Este arreglo tenía la intención de mejorar la eficiencia aerodinámica y la supervivencia de la aeronave, factores críticos para el éxito de misiones de bombardeo de penetración profunda.

También se pretendía maximizar el espacio entre las alas de los primeros biplanos. Se había demostrado en aeronaves más pequeñas y modelos que esto era una estrategia válida, pero Linke-Hofmann apostó al implementarla a tan gran escala.

Perfil lateral extremadamente extraño del Linke-Hofmann R.I.

Debido a las extrañas proporciones de la aeronave, es difícil percibir su escala incluso en fotografías. Como referencia, era más alto y más ancho que un B-17, 20 años antes de que ese avión volara.

Como ocurrió con todos los Riesenflugzeug, solo se construirían unos pocos R.I. Muchos otros fueron diseños completamente únicos.

Diseño del R.I.

El Linke-Hofmann R.I. es, bueno, un avión bastante feo (aunque la belleza está en el ojo del espectador...). Se caracteriza por su fuselaje alto y de múltiples pisos. Su fuselaje era grande y robusto, construido principalmente para albergar sus múltiples motores internamente.

Disposición del fuselaje

Esta disposición interna se eligió para proteger los motores del fuego enemigo y reducir la resistencia aerodinámica, mejorando así el alcance y la supervivencia de la aeronave durante las misiones. También facilitaba que los mecánicos accedieran a los motores en pleno vuelo.


El fuselaje extraordinariamente alto proporcionaba mucho espacio, pero también lo hacía pesado en la parte superior e inestable.

En el piso superior del fuselaje estaba la cabina de pilotaje. El piso del medio contenía los motores, mientras que el piso inferior albergaba las bombas y los bombarderos. Esto resultó en una aeronave muy pesada en la parte superior, con una altura de 6,7 metros.

Pasillos internos dentro del fuselaje permitían a los tripulantes moverse entre diferentes estaciones según fuera necesario, algo útil para las misiones de larga duración para las que estaba diseñado el avión. Casi toda la parte frontal de la aeronave estaba acristalada, lo que proporcionaba buena visibilidad en condiciones ideales. Sin embargo, se descubrió que esto era un inconveniente bajo la lluvia o si la aeronave era iluminada por un reflector.

Motores

El poder provenía de cuatro motores en línea Mercedes D.IVa de ocho cilindros a gasolina. Estos producían alrededor de 260 hp y se usaban en una gran cantidad de aeronaves alemanas, incluyendo el bombardero Gotha G.III y el avión de reconocimiento Albatros.

Cabina del R.I.

Fueron diseñados y construidos para montarse dentro de los fuselajes, por lo que eran muy delgados. Una peculiaridad de esto era la ubicación del carburador, que estaba en la parte trasera del motor. Esto resultó en una distribución deficiente del combustible a los cilindros. En el R.I., estos motores impulsaban dos hélices, una en cada ala.

Para transferir la potencia desde los motores ubicados dentro del fuselaje hasta las hélices, el R.I. utilizaba un intrincado sistema de ejes y cajas de engranajes. Estos componentes mecánicos se extendían desde los motores hasta la estructura central del ala biplana, donde estaban montadas las hélices. Este complejo sistema interno requería un diseño estructural robusto para soportar el peso y la vibración de los motores.


Cuatro motores estaban ubicados en la sala de motores en el nivel intermedio de la aeronave.

Materiales de construcción

El avión estaba construido principalmente de madera, como era típico en la época. Curiosamente, el primer prototipo estaba cubierto con un material llamado Cellon, una película plástica transparente. Este material fue seleccionado por su grado de transparencia, útil para mejorar la visibilidad de la tripulación y el camuflaje.

Nótese la sección trasera transparente del avión. También perciba la altura del avión comparándolo con las personas ubicadas en la cola del mismo.

Otra ventaja notable del Cellon era su acabado liso y brillante, que contribuía a la reducción de la resistencia aerodinámica, un factor crítico para el rendimiento de bombarderos grandes como el R.I. Sin embargo, el Cellon tenía algunos problemas. Principalmente, reflejaba la luz del sol con gran intensidad, lo que lo hacía fácilmente visible. También se volvía amarillo con rapidez y cambiaba de tamaño con la temperatura, afectando el comportamiento del avión.

Debido a estos problemas, la cubierta de Cellon fue reemplazada con tela camuflada en los siguientes ejemplares.


Las ruedas de acero del R.I. estaban amortiguadas por varios resortes de bobina.

Pruebas

El primer vuelo ocurrió a principios de 1917 con el primer prototipo, designado 8/15. Estas pruebas destacaron tanto su potencial como sus muchas limitaciones. Se notó una preocupante flexibilidad en las alas, lo que probablemente resultaba de una construcción delicada.

Esto causó un manejo "esponjoso" en vuelo, con uno de los pilotos de prueba señalando que la aeronave era casi incontrolable.

Un raro vistazo del R.I. en vuelo. Parece algún tipo de gran pez.

En mayo de 1917, las alas del primer prototipo colapsaron a baja altitud, causando un accidente que mató a uno (algunas fuentes dicen dos) de los tripulantes. Más tarde, en 1917, se construyó el segundo prototipo, 40/16, con modificaciones basadas en las lecciones del accidente.

Este segundo prototipo también se perdió en un accidente, esta vez volcando al aterrizar, probablemente debido a su fuselaje alto y pesado. Se dice que se completaron otros dos R.I., pero no hay registros sobre su destino final.

Al final, el R.I. nunca entró en combate y se considera un fracaso. Sin embargo, hay que recordar que esta era una época de experimentación pionera, y dado que Linke-Hofmann tenía poca experiencia en aeronáutica, es impresionante que el avión volara en absoluto.



Prototipo estrellado 40/16.


miércoles, 12 de febrero de 2025

Bombardero pesado: Prototipo SNCAO CAO-700

Prototipo de bombardero pesado SNCAO CAO-700





 

Diseño y desarrollo

A principios de 1937, el Service Technique de l'Aeronautique francés (o Ministerio del Aire) emitió la especificación A20 para un bombardero pesado de cuatro motores para reemplazar a los obsoletos Farman F.221 y F.221 del Armée de l'Air. El diseño de SNCAO , el CAO.700, fue diseñado por su equipo de diseño de Saint-Nazaire , anteriormente el equipo de diseño de Loire-Neuport antes de la nacionalización de la industria aeronáutica francesa. Para acelerar el diseño del avión, se utilizó el fuselaje del hidroavión Loire-Nieuport 10, combinado con una nueva ala, mientras que la instalación del motor se basó en la del Lioré et Olivier LeO 451, con cuatro motores radiales Gnome-Rhône 14N -49 que giraban en el sentido de las agujas del reloj en carenados Mercier ajustados y que impulsaban hélices Ratier de tres palas (como las utilizadas en el ala de estribor del LeO 451).



El avión era de construcción totalmente metálica, con revestimiento reforzado , y tenía una tripulación de cinco personas. El piloto y el copiloto se sentaban en tándem en el lado de babor de una cabina cerrada, con un bombardero /navegador en el morro, un artillero dorsal operando una torreta equipada con un cañón motorizado detrás del borde de salida del ala, y un operador de radio sentado más a popa. El armamento defensivo era una única ametralladora MAC 1934 de 7,5 mm montada de forma flexible en el morro, operada por el bombardero/navegador, con otras dos MAC 1934 montadas de forma flexible disparando desde una posición ventral operada por el operador de radio y un único cañón automático Hispano-Suiza HS.404 de 20 mm en la torreta dorsal. Un compartimento de bombas de 5,8 m (19 pies) de largo podía transportar 3.000 kg (6.600 lb), mientras que los compartimentos de bombas auxiliares en las raíces de las alas podían transportar otras cuatro bombas de 225 kg (496 lb).


Historial operativo

En junio de 1940, el prototipo incompleto fue trasladado por ferrocarril desde la fábrica de Saint-Nazaire a Istres , donde se montó el avión para prepararlo para su primer vuelo. El 24 de junio, el prototipo estaba rodando hacia la pista listo para realizar su vuelo inaugural cuando la noticia del armisticio con Alemania llegó a Istres, lo que provocó que el comandante del aeródromo ordenara a la tripulación del CAO.700 que dejara de rodar el avión y abandonara el vuelo de prueba planeado. No se hicieron más intentos de volar el prototipo.


Variantes

CAO.700 B5
    Bombardero pesado estándar de cinco hombres, propulsado por motores Gnome-Rhône 14N-49. 
CAO.700M
    ( Marina ) Propuesta de avión de reconocimiento naval de largo alcance, con una autonomía de hasta 18 horas.
CAO.710
    Propuesta de bombardero pesado mejorado con cuatro motores Gnome-Rhône 14R de 980 kW (1.320 hp) y mayor envergadura.
Orden del día 720
    Propuesta de avión de pasajeros presurizado con capacidad para 15 pasajeros. El trabajo en este derivado del avión de pasajeros se detuvo en diciembre de 1940 por instrucciones de Alemania, y se ordenó a la fábrica de Saint-Nazaire que construyera hidroaviones Arado Ar-196 .

Especificaciones


Datos de Aviones de guerra de la Segunda Guerra Mundial: bombarderos y aviones de reconocimiento: volumen siete

Características generales


    Tripulación: 5
    Longitud: 18,85 m (61 pies 10 pulgadas)
    Envergadura: 25,00 m (82 pies 0+1 ⁄ 4  pulgada)
    Altura: 6,10 m (20 pies 0 pulgadas)
    Área del ala: 88,00 m2 ( 947,2 pies cuadrados)
    Peso vacío: 11.390 kg (25.111 lb)
    Peso bruto: 18.069 kg (39.835 lb)
    Planta motriz: 4 × motores radiales Gnome-Rhône 14N-49 de catorce cilindros refrigerados por aire , 850 kW (1.140 hp) cada uno (potencia de despegue), 772 kW (1.035 hp) a 4.800 m (15.750 ft)

Rendimiento


    Velocidad máxima: 540 km/h (335 mph, 290 kn) a 5.300 m (17.385 pies)
    Velocidad de crucero: 320 km/h (200 mph, 170 kn) a 16.400 pies (5.000 m)
    Alcance: 2200 km (1400 mi, 1200 nmi)
    Techo de servicio: 5.500 m (18.000 pies)

Armamento


    Armas:
        1 ametralladora MAC 1934 de 7,5 mm con montajes de nariz flexibles,
        2 ametralladoras de 7,5 mm en montaje ventral flexible y
        1 cañón HS.404 de 20 mm en la torreta dorsal
    Bombas: bombas de 3.900 kg (8.600 lb)


miércoles, 29 de enero de 2025

Caza VTOL: Proyecto Lockheed XFV-1 Salmon



Lockheed XFV-1 Salmon






El Lockheed XFV (algunas veces era llamado Salmon​) fue un caza VTOL experimental de la Marina de los Estados Unidos. Prototipo construido por Lockheed para demostrar la operación de un caza de despegue y aterrizaje vertical para proteger los convoyes.



Desarrollo

Después de la Segunda Guerra Mundial, la Marina de los EE. UU. estaba buscando la forma de mejorar el equipamiento de buques y la defensa de los buques mercantes con aviones de despegue vertical. En 1950, se efectuó un concurso de diseño seleccionando Convair y Lockheed2​ para que cada una construyera un avión de combate monoplaza con características de aterrizaje y despegue vertical. Cada uno utiliza un motor turbopropulsor Allison YT40-A-14 (junto a dos secciones T38 de poder montadas de lado a lado) con dos hélices a contra-rotación de tres hojas Curtiss-Wrigh. Los motores producían 5500 hp con 7100 eshp en el momento de despegue, lo que resulta en más de 10000 libras de empuje.

Diseño

Cuando se le adhirió el tren de aterrizaje fijo , el avión adquirió una apariencia inusual.3​ Los empleados de Lockheed lo apodaron "pogo stick" (recordando a su rival el Convair XFY-14​).


Pruebas y evaluación

Para comenzar las pruebas de vuelo, se colocó un tren de aterrizaje temporal no retráctil con patas largas en V reforzadas en el fuselaje y ruedas de cola fijas en el par inferior de aletas. De esta forma, el avión fue transportado en camión a la Base de la Fuerza Aérea Edwards en noviembre de 1953 para realizar pruebas en tierra y ensayos de rodaje. Durante una de estas pruebas, en un momento en el que la sección de popa del gran cono de hélice aún no había sido instalada, el piloto de pruebas jefe de Lockheed, Herman "Fish" Salmon, logró llevar el avión a la pista más allá de la velocidad de despegue, y el avión realizó un breve salto el 22 de diciembre de 1953. El primer vuelo oficial tuvo lugar el 16 de junio de 1954.



Las pruebas completas de despegue vertical en la Base de la Fuerza Aérea Edwards se retrasaron a la espera de la disponibilidad del Allison T54 de 7100 hp, que nunca se materializó. Después del breve salto involuntario, el avión realizó 32 vuelos. Todos los vuelos posteriores del XFV-1 no implicaron ningún despegue o aterrizaje vertical. El XFV-1 podía realizar algunas transiciones en vuelo desde el modo convencional al modo de vuelo vertical y viceversa, y se mantuvo brevemente en vuelo estacionario a cierta altitud. El rendimiento seguía estando limitado por los límites del régimen de pruebas de vuelo. Con la constatación de que los cazas contemporáneos eclipsarían las velocidades máximas del XFV y de que solo pilotos muy experimentados podían pilotar el avión, el proyecto se canceló en junio de 1955.






Salmon hizo rodar el XFV-1 con su tren de aterrizaje temporal "desde un arranque parado hasta 175 mph, y luego lo devolvió a un punto muerto sin utilizar los frenos, todo ello en una distancia de una milla".



Comenzando con una breve prueba, el 23 de diciembre de 1953 pilotado por Herman "Fish" Salmón, el avión efectuó un total de 32 vuelos, lo que demuestra la transición entre horizontal y vertical de vuelo. Sin embargo, no se realizaron despegues verticales. El avión fue equipado con tren de aterrizaje fijo, para que pudiera despegar horizontalmente. El rendimiento fue decepcionante, y el proyecto fue cancelado en junio de 1955.

Supervivientes

El único prototipo de vuelo terminó en el Sun 'n Fun Museo5​6​ en Lakeland, Florida. Estando actualmente expuesto en el parque contiguo.



El segundo prototipo, que nunca fue terminado, está en la entrada de Tutor NAS en Los Alamitos, California.

Especificaciones


    Características generales

        Tripulación: 1
        Longitud: 36 ft 10,25 en (11,23 m)
        Envergadura: 30 pies 22 en (8,36 m)
        Altura: 36 pies 10,25 en (11,23 m)
        Superficie alar: 246 m² (22,85 m m²)
        Peso en vacío: 11.599 libras (5.261 kg kg)
        Cargado de peso: 16.221 libras (7.358 kg kg)
        Máximo al despegue: 16.221 libras (7.358 kg kg)
        Motor: 2 × 1 Allison XT40-A-14 turbohélice, cada uno ()



    Rendimiento

        Velocidad máxima: 580 mph (930 km / h)
        Velocidad de crucero: 410 mph (660 km / h)
        Rango: desconocido ()
        Techo 43.300 pies (13.100 m)
        Tasa de ascenso: 10.820 m / m (3.300 m / min)
        Carga alar: 65,9 lb / ft ² (322 kg / m²)



    Armamento

        4 cañones 20 mm o 48 cohetes de 2,75

Nota: Las estimaciones de rendimiento sobre la base de un XFV con motor YT40-A-14 .