Mostrando entradas con la etiqueta inteligencia artificial. Mostrar todas las entradas
Mostrando entradas con la etiqueta inteligencia artificial. Mostrar todas las entradas

martes, 17 de diciembre de 2024

F-35: El último caza pilotado americano

El último piloto de combate

El nuevo avión de combate F-35 es tan sofisticado, tan automatizado, está tan conectado que está alimentando un debate: ¿Los pilotos aún necesitan volar?
Por Kevin Gray | Popular Science


Spencer Lowell

En un asfalto polvoriento, a unas 20 millas del centro de Phoenix, el Capitán Joseph Stenger está parado en un calor de 30 grados, apenas sudando. Un piloto de caza de 32 años con el pelo peinado hacia atrás, los ojos firmes y los antebrazos tiesos que ves en los carteles de las películas, admira una pieza igualmente impresionante de maquinaria voladora: el caza F-35 Lightning II. Con su traje de vuelo verde y una altura de poco más de 1.8 metros, Stenger está casi cara a cara con este jet amenazante.

Es su trabajo descubrir qué puede hacer en el combate y enseñarlo a cientos de otros pilotos de combate. El F-35 comenzó a llegar aquí en la Base Luke de la Fuerza Aérea el invierno pasado. Es el caza más sofisticado que se haya construido. Es sigiloso, por lo que puede parecer del tamaño de una pelota de golf al radar enemigo, si se detecta en absoluto. También puede bloquear el radar enemigo, o hacer que parezca que hay 100 objetivos del tamaño de una pelota de golf en el cielo. Puede viajar a Mach 1.6. Lleva un cañón de 25 mm, misiles aire-aire, dos bombas guiadas de 2.000 libras y cuatro bombas externas guiadas por láser. Pero lo que realmente lo diferencia es su cerebro, 8 millones de líneas de código de software -más que cualquier caza de la historia- que fusionan los sistemas de navegación, comunicación y focalización.

Stenger lo explica así: en jets antiguos, tiene que operar manualmente cosas como el radar (apuntándolo al suelo para buscar misiles disparados hacia él o hacia el cielo, para buscar aviones enemigos). Él tiene que monitorear un enlace de datos de alta velocidad para comunicaciones de avión a avión y mensajes de texto de tropas terrestres. Él o su tipo de armas del asiento trasero debe recoger los datos antes de bloquear un objetivo y disparar. "Puedes imaginar que lleva mucho tiempo y requiere mucho procesamiento cognitivo", dice Stenger.


Spencer Lowell

El F-35 de un solo asiento hace gran parte de esto para él, al fusionar y automatizar docenas de sensores. Así que, por ejemplo, si su sensor de calor detecta un misil enemigo que se dirige hacia él, sonará un timbre, "como un timbre", dice, y una voz de computadora dirá: "Misil a la izquierda, nueve en punto". Cuando Stenger mira allí, aparece un círculo verde en el escudo facial de su casco, identificando el sitio del misil, junto con su velocidad y tiempo para impactar. Solo mirando el círculo, Stenger puede apuntar con su arma y disparar al enemigo, y luego escapar del misil. Seis cámaras externas también capturan una vista de 360 grados fuera del jet y lo alimentan a su escudo facial. Si Stenger mira hacia abajo, puede ver a través del suelo de la cabina de vuelo.

Lockheed Martin, el contratista de defensa que fabrica el F-35, entregará miles de estos aviones en las próximas décadas a la Marina de los EE. UU., Los Marines y la Fuerza Aérea. La USAF tomará 1,763, y Stenger ayudará a entrenar a los aspirantes a pilotos F-35 que pasarán por las puertas de color arena de Luke. Con más de 200 horas de vuelo en el F-35 hasta el momento, él lo sabe tan bien como cualquier piloto de la Fuerza Aérea aquí. Cuando no está en la línea de vuelo, pasa días en salas de información clasificada, leyendo manuales tácticos sobre las capacidades del F-35. Él puede marcar los atributos del jet como un nuevo enamorado.

Stenger y la mayoría de los demás militares ven el avión como la clave de la continua superioridad aérea de Estados Unidos, y sin embargo, también podría significar el comienzo del fin de una profesión estadounidense icónica. El F-35 es tan de alta tecnología, tan automatizado, tan inteligente, tan conectado, que en mayo, el secretario de la Marina, Ray Mabus, declaró: El F-35 "debería ser, y casi seguro será, el último aviones de combate de ataque tripulados que el Departamento de Marina alguna vez comprará o volará ".

"Si aparece otro caza tripulado, genial. Si no, eso apesta para la próxima generación ".

Para Mabus y otros, el trabajo de un piloto de combate ha cambiado a lo largo de los años. Los pilotos ya no se acercan sigilosamente a las colas, entrenan sus puntos de mira y disparan. Recopilan información de pantallas que parecen iPads o pantallas de cascos. Los sensores electrónicos, la guerra en red y los misiles guiados por radar aire-aire pueden derribar a los combatientes enemigos desde 100 millas de distancia. La mayoría de las veces, los pilotos en un conflicto nunca se ven en absoluto. Si ese es el caso, muchos discuten, ¿por qué no tener los pilotos en el suelo, escaneando las mismas pantallas y empujando los mismos botones, fuera del peligro?

Stenger ha considerado esta pregunta antes. Como piloto en Afganistán, voló más de 330 horas de combate, haciendo cosas como volar combatientes talibanes y casas de seguridad, sacar misiles lanzadores y proporcionar cobertura a las fuerzas de la coalición. Y, sin embargo, en sus nueve años en la Fuerza Aérea, nunca ha estado en una pelea de perros o incluso se ha encontrado con un caza enemigo o cualquier tipo de avión enemigo. Cuando se enfrenta al argumento de los aviones de combate no tripulados, toma una línea filosófica. "No ofrecería una conjetura porque soy un capitán, y mi trabajo es pilotar el F-35", dice. "Y eso es lo que voy a hacer. Si aparece otro caza tripulado, genial. Si no, bueno, eso apesta para la próxima generación porque nunca llegarán a saber cómo es ser un piloto de combate ".

***

Luke es típicamente una base ocupada de la Fuerza Aérea. Cada 15 minutos, el aire del desierto retumba con el sonido de los aviones que despegan y aterrizan. Durante los últimos 32 años, ha servido como una importante base de entrenamiento para los F-16 Fighting Falcons que se sientan en filas interminables debajo de toldos en la línea de vuelo. Esos aviones se eliminarán gradualmente a medida que lleguen los F-35 y los apretarán por espacio.

Durante el entrenamiento de vuelo, los estudiantes de Stenger aprenden muchas habilidades, y las peleas de perros todavía están entre ellos. Con 1.7 millones de acres de Desierto de Sonora y 57,000 millas cúbicas de espacio aéreo a su disposición, Stenger puede orquestar el tipo de escenarios tácticos de combate aéreo que se ven en Top Gun. "Podemos establecer distancias de 100 millas para el entrenamiento de combate aire-aire", dice Stenger, sentado en una oficina desnuda del segundo piso, donde se mudó en julio. En el entrenamiento, Stenger enfrentaría a dos de sus estudiantes de F-35 contra cuatro pilotos de caza F-16. (Esta es la misma clase de aviones de combate que poseen Rusia y China, y el tipo que podría enfrentarse al F-35.) "Empleas las tácticas que te enseñaron, y las matarás antes de que te vean". Stenger dice, "mucho más allá del alcance visual".


El capitán de la Fuerza Aérea Joseph Stenger tiene más de 200 horas volando en el F-35.
Spencer Lowell

Esa frase es crucial para el argumento de los aviones de combate no tripulados. Casi todos los enfrentamientos aire-aire en el planeta han estado más allá del alcance visual desde principios de los años noventa. Es alrededor de la época en que los ejércitos modernos comenzaron a confiar en la guerra en red: un sistema que combina localizadores satelitales GPS, radar infrarrojo, enlaces seguros de datos para comunicación terrestre y aire-aire, aviones de vigilancia como el E-3 Sentry de Boeing y, por supuesto, misiles aire-aire guiados por radar.

A medida que la guerra en red ha aumentado, los incidentes de combate aéreo han disminuido. Desde 1990, solo 54 aviones de combate han sido derribados en todo el mundo, dice John Stillion, miembro del Centro de Evaluaciones Estratégicas y Presupuestarias, y ex oficial de la Fuerza Aérea, que reunió una base de datos de todas las victorias aéreas confirmadas entre 1965 y 2013 .

Por supuesto, la geopolítica puede explicar parcialmente esa tendencia. Pocos estados con aviones de combate han estado en guerra en ese período. Pero Stillion argumenta que la tecnología también está impulsando el cambio. El aumento en el vuelo impulsado por sensores y el disparo fuera de rango visual, dice, ha hecho que los puntos fuertes tradicionales de un jet -algo como la alta velocidad, la aceleración y la maniobrabilidad- sean menos importantes de lo que alguna vez fueron. Lo que más importa ahora, argumenta en un artículo reciente, "Tendencias en el combate aire-aire: implicaciones para la futura superioridad aérea", son sensores, armas potentes y de largo alcance, alcance de vuelo de la aeronave y conectividad de red.

"Esas son cosas normalmente asociadas con los bombarderos de largo alcance", dice Stillion. "Así que tal vez nuestros futuros aviones de combate se asemejen a plataformas de ataque de largo alcance no tripuladas".

Es una posición interesante, que tiene sentido tanto técnico como fiscal. Los aviones no tripulados pueden hacer, y de alguna manera hacerlo mejor, todo lo que un avión de combate tripulado puede. Pueden permanecer en alto las 24 horas a la vez, mientras que los cazas tripulados se limitan a la cantidad de tiempo que un piloto puede permanecer en un asiento de la cabina abarrotado, varias horas en el mejor de los casos. Además, los drones no necesitan ser entrenados y entrenados, como lo hacen los pilotos. Y terminar esa práctica podría ahorrar mucho dinero.


El F-35 Lightning II utiliza 8 millones de líneas de código de software y puede alcanzar Mach 1.6.
Spencer Lowell

El costo del entrenamiento puede ser asombroso: la Fuerza Aérea gasta $ 14,183 por hora para volar un solo F-35A, de acuerdo con el presupuesto del Departamento de Defensa 2015. Eso es solo en el entrenamiento en tiempos de paz. Presupuestando 13 horas de tiempo de la tripulación por mes, lo que equivale a $ 2.2 millones por año, para el entrenamiento de un equipo. Cuando su programa de entrenamiento F-35 se ejecute por completo en unos pocos años, Luke tendrá 144 de esos aviones. Cada escuadrón en la base estará compuesto por 24 aviones con varios cientos de personal de apoyo. Cuando haces los cálculos, las personas son caras y poco prácticas.

***

Aunque muchos coinciden en que el papel de los aviones de combate y, en consecuencia, de los pilotos de combate, cambiará en el futuro, cómo se desarrollará eso es tema de debate. Stillion argumenta que el avión de combate de la próxima generación debería parecerse más a los bombarderos de ataque de largo alcance. Esos aviones son más grandes que los cazas, de lejos. Podrían llevar un equipo, uno incluso lo suficientemente grande como para intercambiar turnos, pero no tendrían pilotos de caza, per se. En cambio, el bombardero estaría equipado con misiles de largo alcance y un complemento de cuatro drones, cada uno de los cuales tendría su propio radar avanzado y misiles de mediano alcance.

En un futuro combate aéreo contra naciones como China o Rusia, Stillion imagina a esos drones volando en una línea de piquete en lo más profundo del territorio enemigo, y actuando como vigías. El atacante seguiría unas 100 millas detrás de ellos. La tripulación controlaría los drones y los usaría para duplicar el rango de detección del sensor del bombardero. Como lo representa Stillion, en un duelo contra ocho aviones de combate. En ese punto, el equipo de bombarderos dispararía misiles de largo alcance (buenos para cerca de 250 millas), eliminando hasta seis jets enemigos a la vez.

Stillion no está solo en la reinvención del combate aéreo. El sitio experimental Skunk Works de Lockheed Martin en California tiene docenas de técnicos que combinan sistemas no tripulados con inteligencia artificial. Su proyecto secreto Minion está desarrollando un dron de reconocimiento, como los drones avanzados de Stillion, que también atascaría el radar enemigo, lanzaría bombas guiadas por GPS y dispararía un microondas de alta potencia para desactivar la electrónica. "Podría proyectar hacia adelante donde hay un momento en el que puede reemplazar la capacidad cognitiva humana con inteligencia artificial", dice Bob Ruszkowski, director de dominación aérea avanzada y sistemas no tripulados en Skunk Works. Pero también cree que siempre habrá una necesidad de "una mezcla de personas tripuladas y no tripuladas trabajando juntas".

Los ingenieros de Northrup Grumman también se concentran en el problema. Su avión de combate no tripulado experimental X-47B ya ha realizado despegues y aterrizajes con éxito desde un portaaviones (así como también ha hecho reabastecimientos en el aire). La compañía cree que un dron de peleas de perros está a solo años de distancia.

Lo que podría retrasar el progreso son las cuestiones éticas que surgen cuando se habla de los aviones de combate de drones. "A veces la guerra se trata de romper cosas, y en ocasiones se trata de matar gente", dice Heather Penney, piloto de caza de la Guardia Aérea F-16 que desplegó dos veces en Irak. "Incluso con aviones piloteados remotamente, todavía hay humanos en el circuito. Independientemente de lo bueno que Siri pueda llegar a ser en su teléfono, no creo que nosotros, como sociedad, lleguemos al punto en el que confiemos en las plataformas armamentísticas para tomar decisiones autónomas sobre la vida y la muerte ".

Penney sabe que funciona bien. En la mañana del 11 de septiembre de 2001, como novato en la Guardia Nacional Aérea D.C., y su primera piloto de caza, se encontró en la Base Aérea Andrews despegando en un F-16. Sus pedidos ese día: Derribar el vuelo 93 de United Airlines, lleno de pasajeros y secuestradores, rumbo a la capital de la nación. Ella no tenía municiones. Más bien, se le encomendó una misión suicida: Ram el avión si fuera necesario. Los pasajeros terminaron tomando el vuelo ellos mismos.

"Nunca confiaremos en una plataforma de armas para tomar decisiones de vida o muerte".

Penney, que trabaja como director de los sistemas de superioridad aérea de la USAF en Lockheed, cree personalmente que el concepto de Stillion tiene mucho sentido. "Pero hay muchas cosas tecnológicas que van con él", dice. Entre los más importantes está el desarrollo de armas de energía dirigida: láser que viajarán a la velocidad de la luz para sacar aviones y destruir enlaces y comunicaciones de datos de red. Todas las naciones importantes -los EE. UU., China, Rusia, la mayoría de los países europeos- los están persiguiendo.

Entonces, si la mayor parte de su fuerza aérea está compuesta de drones, y dependen de enlaces de datos, y si el enemigo puede freír esos enlaces con un pulso eléctrico, entonces su dron dice: "Ya no estoy hablando con mi piloto; Voy a volar a casa porque eso es lo que estoy programado para hacer '", dice Penney. "Entonces el chico malo ni siquiera necesita derribarlo". El efecto es el mismo. Han ganado el espacio aéreo ".

Los pilotos reales, por otro lado, trabajarán hacia un objetivo de misión incluso cuando el espacio de batalla se degrade, dice Penney. "Pueden sentarse con elegancia, de manera e intención, y en la medida de sus posibilidades". Penney también cree que solo los humanos, no los zánganos, pueden descubrir cómo meterse en la cabeza del enemigo y meterse con él de una manera que lo paraliza. "Tu trabajo es crear confusión en el enemigo", dice Penney, "ponte en su línea para que tomes mejores decisiones más rápido de lo que él es, haciendo que se equivoque tras error". Por eso, dice ella, nada puede afectar al ser humano cognición. Hasta aquí.

***

Después de mi gira con Stenger, justo cuando el sol de Arizona está comenzando a calentar las millas de asfalto de Luke, me dirijo a un tramo de carretera recién pavimentado en un rincón de la base. Las cosas son tranquilas. Hay un raro descanso de tres días en el cronograma de vuelo y los equipos están aprovechando el tiempo de inactividad. A pesar del calor del mediodía, los equipos de aviadores juegan al voleibol en un foso de arena. Otros se sientan en mesas de picnic, a la sombra de los pinos, beben Coca-Colas y miran los juegos. La escena es tan directa de Top Gun que evoca una pista de acompañamiento de Kenny Loggins (aunque los aviadores corpulentos no tienen ninguno de los movimientos de Maverick e Iceman).

Cerca se encuentra un edificio de estuco de dos pisos con un atrio elevado y un techo inclinado que se asemejan a las alas de un jet. Recientemente construido, parece una escuela secundaria del sudoeste, pero es un centro de capacitación de $ 47 millones. En su interior huele a alfombra nueva y alberga unas 18 aulas, un auditorio con capacidad para 240 personas, una gran cantidad de cubículos aún por ser utilizados y, detrás de puertas de seguridad dobles fuertemente vigiladas, espacio para 12 nuevas, lo último en tecnología, simuladores de vuelo F-35 que cuestan $ 23 millones cada uno.


El Teniente Coronel Rhett Hierlmeier de la Fuerza Aérea entrena a los pilotos de combate de F-35.


El teniente coronel Rhett Hierlmeier dirige las operaciones del centro. El piloto de 38 años de edad solía volar F-15C Eagles fuera de Okinawa, principalmente alrededor del Pacífico y Guam y Japón, y más tarde F-22. Ambos aviones son aviones de combate aire-aire. "Así que en los últimos 10 años, realmente no hemos hecho mucho para que lo hagamos", dice, sentado en una oficina dispersa en el segundo piso, con vistas a docenas de cubículos vacíos. "Los despliegues fueron realmente sobre presencia, demostración de fuerza". Señala que la última vez que un piloto de caza de la Fuerza Aérea de Estados Unidos derribó un avión enemigo fue a finales de los 90, durante las Guerras de los Balcanes. "Con Iraq, esos tipos terminaron enterrando sus aviones debido a nuestra presencia superior", dice.

Un ex instructor de la Academia de la Fuerza Aérea, Hierlmeier voló el F-35 por primera vez tres semanas antes. Su trabajo aquí es entrenar a un cuadro instructor que luego puede entrenar a cientos de pilotos estadounidenses, así como pilotos de ocho países de la coalición que se han unido para comprar el F-35. Incluyen Australia, Noruega, Canadá, Turquía, los Países Bajos y Dinamarca. La clase actual es pequeña, incluyendo cuatro estadounidenses, tres noruegos y un italiano, pero crecerá hasta 300 pilotos cada año.

Hierlmeier me conduce a través de dos puertas cerradas y entra en una sala vertiginosa que parece sacada de un libro del Dr. Seuss: cada 15 pies aproximadamente, arcos asimétricos pintados en desorientadores rojos y grises, retroceden por el pasillo, flanqueados por luces azules de la policía. Hierlmeier no está seguro de por qué, pero parecen confundir a los intrusos. Desde altavoces ocultos, una canción de Thin Lizzy domina nuestra discusión: Las bebidas fluirán y la sangre se derramará / y si los niños quieren pelear, será mejor que los dejes. Cuando pregunto si es para amplar pilotos estudiantes, Hierlmeier, que habla en serio, dice: "No. Hay muchas conversaciones clasificadas que tienen lugar detrás de estas paredes. Está destinado a encubrirlos ".

Nos detenemos en una puerta doble del tamaño de un muelle de carga. Hierlmeier lo abre en lo que parece un paseo en un parque de diversiones. Una cúpula blanca, de 11 pies de diámetro, se encuentra en el medio de la habitación, rodeada por un enorme marco de acero y 25 proyectores de alta definición. Una réplica de la carlinga F-35 se encuentra en las pistas que desaparecen en la cúpula. Pregunto si puedo tomar una foto. No, dice Hierlmeier. Pero él sí me invita a sentarme en la cabina, cosa que hago. Es como estar sentado en un automóvil deportivo italiano de poca altura. Antes de que lleguen a pilotar un F-35 real, los alumnos pilotos primero deben pasar un mes en clase practicando en monitores de computadora con joysticks. Luego hacen 30 horas dentro de estos simuladores, cascos puestos. Esos cascos, hechos por el contratista de defensa Rockwell Collins, están hechos a medida para cada piloto y cuestan más de $ 400,000 cada uno. "Es como llevar una laptop en la cabeza", dice Hierlmeier sobre su poder de computación.


DENTRO DEL CASCO F-35

El casco Gen III, por el contratista Rockwell Collins, ofrece varias características nuevas, que incluyen: Seis cámaras externas alimentan el video a la pantalla facial, lo que permite a los pilotos ver a través del avión; un sistema de pistas permite a los pilotos apuntar armas con sus ojos; la visión nocturna incorporada permite ver en la oscuridad; y un sistema de advertencia de misiles explora tierra y aire, alertando a los pilotos de las amenazas.
Ilustración de Peter Sucheski

Los sims son la experiencia de realidad virtual más avanzada del planeta. Un piloto salta a la cabina y rueda hacia la cúpula de la pista. Charla. Charla. Charla. Una vez dentro, los proyectores disparan imágenes de nubes y sombras con calidad de Google Earth, montañas que pasan apresuradamente, barrios polvorientos a 30,000 pies de profundidad. Hay pistas de aterrizaje rurales, jets enemigos adelante y misiles zumbando a su manera. Es una vista envolvente de 360 ​​grados con efectos de sonido. Al igual que los propios F-35, los simuladores están conectados a un servidor de tierra seguro y vinculados entre sí. De esa forma, los pilotos pueden entrenar juntos, en cuartos separados, en misiones tácticas. Estos sims se vincularán algún día a otros simuladores de aviones de combate en las bases de entrenamiento de la Fuerza Aérea en los EE. UU.

Y ahí es donde se pone interesante. Hierlmeier es un estudiante de tecnología y creció leyendo ciencia ficción y viendo Stars Wars. De pie fuera de la cabina, mira hacia la cúpula oscura y dice que cree que un día combatiremos a nuestros enemigos desde dentro de una de estas cosas. Cuando pregunto qué va a tomar, dice rotundamente, "Ancho de banda".

"Espero que veamos un día en que el hombre no esté en la máquina, pero él está al tanto".

El ancho de banda es un gran desafío para la guerra en red. Y volar un avión no tripulado desde el suelo requiere enviar y recibir cantidades masivas de datos en tiempo real. Así que los ingenieros se centran en cosas como la mejora de la inteligencia artificial para que los aviones puedan actuar con más autonomía, reduciendo así el ancho de banda de comunicación. Si conseguimos que las máquinas piensen por sí mismas, podemos equiparlas con un objetivo de misión, reglas de enfrentamiento, escenarios de batalla, y luego enviárselos en camino. Solo solucionando los problemas de IA y autonomía de operaciones, y el procesamiento integrado, dice Ruszkowski, podemos "reducir la congestión de comunicaciones y el ancho de banda de uso". Skunk Works lo ha demostrado con sistemas automáticos de prevención de colisiones en tierra y evitación de colisiones aéreas. Si Ruszkowski y su equipo pueden extender esas capacidades a los cazas furtivos de la próxima generación, dice, sería un gran avance resolver el problema: "Creemos que esa es la base de los futuros sistemas militares".

Hierlmeier, flanqueada por un par de contratistas de Lockheed Martin y una persona de relaciones públicas de la Fuerza Aérea que toca su teléfono inteligente, se apoya en la cabina y considera ese futuro. "No quiero ser el tipo de la caballería del caballo al comienzo de la Primera Guerra Mundial", dice. "Espero ver un día en que el hombre no esté en la máquina, en el avión, pero el hombre está al tanto. Tenemos que abrazar eso. Veo un día en que conduces hacia esta cúpula y peleas la lucha desde aquí mismo ".

martes, 19 de noviembre de 2024

Munición merodeadora basada en drones Elbit Systems LANIUS con IA

Elbit Systems LANIUS drone-based loitering munition





El LANIUS, desarrollado por Elbit Systems, es un dron militar de vanguardia diseñado para revolucionar el combate en entornos urbanos. A simple vista, parece un dron más, pero su capacidad lo convierte en una "munición merodeadora" única: puede volar por un área en busca de su objetivo y atacarlo con precisión letal. Este pequeño pero poderoso dispositivo se desplaza con agilidad por calles estrechas y dentro de edificios, lo que lo hace ideal para operaciones en lugares donde las armas convencionales no pueden llegar.

Lo más impresionante del LANIUS es su inteligencia artificial. Este dron es capaz de tomar decisiones rápidas y, gracias a sus avanzados sistemas, puede identificar y diferenciar entre combatientes y civiles, reduciendo el riesgo de daños colaterales. Aunque tiene autonomía para operar, un operador humano siempre está a cargo del último paso: decidir si atacar o no.

Pero LANIUS no solo actúa en solitario. Puede trabajar en enjambres, es decir, en grupos de drones que coordinan sus movimientos para llevar a cabo misiones complejas, como atacar varios objetivos a la vez o asegurar áreas específicas. Ya sea para realizar ataques precisos, recopilar información vital o apoyar a las tropas en tierra, este dron está diseñado para ser una herramienta versátil y mortal.

En un mundo donde el combate en ciudades se vuelve cada vez más común, LANIUS representa el futuro de la guerra: rápido, preciso y capaz de adaptarse a los desafíos del campo de batalla moderno.


El LANIUS de Elbit Systems es una munición merodeadora basada en drones, desarrollada por la empresa israelí Elbit Systems, que está diseñada para mejorar la capacidad de las fuerzas militares en combate urbano y situaciones de combate a corta distancia. A continuación, se explica en detalle:

1. Munición merodeadora basada en drones

  • El LANIUS es lo que se conoce como una munición merodeadora, un tipo de armamento que puede "merodear" o permanecer en el aire durante un tiempo, mientras busca un objetivo para atacar.
  • Funciona como un dron suicida pequeño, lo que significa que tiene la capacidad de identificar, seguir y atacar un objetivo de manera precisa, y luego se destruye en el proceso.


2. Enfoque en el combate urbano

  • Este dron está diseñado específicamente para ser utilizado en entornos urbanos, donde la precisión y la capacidad de obtener información en tiempo real son extremadamente importantes.
  • Puede navegar por terrenos complejos, como edificios o calles estrechas, que suelen ser difíciles de manejar para drones o armas más grandes.


3. Capacidades impulsadas por inteligencia artificial

  • El LANIUS utiliza inteligencia artificial (IA) para identificar y atacar objetivos.
  • Es capaz de mapear su entorno de manera autónoma, es decir, por sí mismo, identificar amenazas y diferenciar entre combatientes (enemigos) y no combatientes (civiles), lo que ayuda a reducir el daño colateral (daños a personas o cosas no involucradas en el conflicto).


4. Alta maniobrabilidad

  • El dron es muy ágil y liviano, lo que le permite operar en espacios confinados, como dentro de edificios o entre calles estrechas.
  • Puede buscar un área rápidamente, lo que lo hace útil tanto para reconocimiento (recopilación de información) como para ataques tácticos en zonas densamente pobladas o complejas.

5. Cargas útiles modulares

  • El LANIUS está equipado con diferentes tipos de cargas útiles, que son los componentes que lleva el dron para cumplir su misión. Esto incluye desde cargas letales (explosivos para atacar al enemigo) hasta sistemas no letales para recoger información.

6. Control humano en la toma de decisiones

  • Aunque el LANIUS puede funcionar de manera autónoma, siempre hay un operador humano que tiene el control final sobre la decisión de atacar, lo que garantiza que se cumplan las normas de combate y los requisitos legales.

7. Capacidad de operar en enjambre

  • El LANIUS puede funcionar solo o en grupo, en lo que se conoce como formaciones en enjambre, donde varios drones trabajan juntos de manera coordinada para llevar a cabo misiones más complejas, como bloquear áreas o atacar múltiples objetivos al mismo tiempo.

8. Flexibilidad de misión

  • Este dron puede adaptarse a diferentes tipos de misiones, como buscar y destruir objetivos, reconocimiento y vigilancia (recolección de información), o adquisición de objetivos (identificación precisa de un objetivo) en áreas donde los drones más grandes o los aviones serían menos efectivos.

9. Integración con otros sistemas

  • El LANIUS puede integrarse con otros sistemas militares, como fuerzas terrestres o más drones, lo que mejora la capacidad de coordinarse dentro de una red de combate más grande y compleja.

En resumen, el LANIUS de Elbit Systems es un avance significativo en el uso de drones pequeños, impulsados por inteligencia artificial, para las operaciones militares modernas, especialmente en combates en entornos urbanos. Se destaca por su precisión, capacidad autónoma y la habilidad de adaptarse rápidamente a las situaciones dinámicas en estos entornos complejos.





jueves, 25 de marzo de 2021

DARPA quiere dotar un L-39 con inteligencia artificial para combate aéreo

DARPA introducirá inteligencia artificial en el jet L-39 para realizar combate aéreo autónomo

Por Alexandre Galante || Poder Aéreo



Periodista, diseñador, fotógrafo y piloto virtual - alexgalante@fordefesa.com.br


Los combates aéreos virtuales avanzan a un equipo 2 contra 1, vuelos de subescala reales en marcha hacia fines de 2021

El programa Air Combat Evolution (ACE) de DARPA se encuentra en medio de la Fase 1 y ha logrado varios logros importantes en previsión del combate de vuelo real de los aviones de subescala de la Fase 2 a finales de este año. Los logros hasta la fecha incluyen: combate aéreo virtual avanzado que involucra múltiples escenarios de aeronaves dentro del alcance visual (WVR) y más allá del alcance visual (BVR) con armas simuladas actualizadas; vuelos reales de un jet instrumentado para medir la fisiología del piloto y la confianza en la Inteligencia Artificial (IA); y modificaciones iniciales al primer avión de entrenamiento a reacción a gran escala programado para albergar un “piloto” de IA a bordo en la Fase 3 del programa.

“Nuestro mayor enfoque al final de la Fase 1 es la transición de la simulación a los algoritmos de IA reales mientras nos preparamos para escenarios de aviones de subescala de la vida real a fines de 2021”, dijo el Coronel Dan “Animal” Javorsek, gerente de programa de Tecnología Estratégica de DARPA. Oficina. “Gestionar esta transición al mundo real es una prueba crítica para la mayoría de los algoritmos de IA. De hecho, los esfuerzos anteriores han sido frágiles solo para este tipo de transiciones porque algunas soluciones pueden depender demasiado de los artefactos digitales del entorno de simulación ".

El objetivo del programa ACE, que comenzó el año pasado, es desarrollar una autonomía confiable, escalable, a nivel humano e impulsada por IA para el combate aéreo, utilizando la pelea de perros colaborativa entre humanos y máquinas como su problema de desafío. En agosto de 2020, el Laboratorio de Física Aplicada (APL) de Johns Hopkins realizó las pruebas AlphaDogfight del programa ACE, una competencia de ocho equipos cuyos IA volaron F-16 simulados en combate aéreo 1-v-1, desarrollado por la APL. La campeona AI luego voló cinco combates simulados contra un experimentado piloto de caza F-16 en un simulador, derrotando al piloto humano 5-0.

En febrero, los equipos de desarrollo del algoritmo ACE completaron el siguiente nivel de combate aéreo simulado de IA en Scrimmage 1 en APL. APL continuó diseñando y ampliando el entorno de simulación para esta fase del programa ACE. Los equipos demostraron un combate simulado de 2 contra 1 con dos F-16 "azules" amistosos luchando como un equipo contra un avión "rojo" enemigo. Esto marcó la primera partida de IA después de las pruebas AlphaDogfight e introdujo más armas en la mezcla: un cañón para disparos precisos de corto alcance y un misil para objetivos de largo alcance.

"Agregar más opciones de armas y múltiples aviones introduce muchas de las dinámicas que no pudimos lograr y explotar en las pruebas de AlphaDogfight", dijo Javorsek. “Estos nuevos compromisos representan un paso importante en la construcción de confianza en los algoritmos, ya que nos permiten evaluar cómo los agentes de IA lidian con las restricciones de fuego definidas para prevenir el fratricidio. Esto es extremadamente importante cuando se opera con armas ofensivas en un entorno dinámico y confuso que incluye un caza tripulado y también ofrece la oportunidad de aumentar la complejidad y la formación de equipos asociados con la maniobra de dos aviones en relación con un oponente ".

Otro enfoque principal del programa ACE es medir la confianza del piloto en la capacidad de la IA para realizar maniobras de combate mientras el ser humano a bordo se centra en decisiones de gestión de batalla altamente cognitivas. Para comenzar a capturar estos datos confiables, los pilotos de prueba volaron varios vuelos en un avión de entrenamiento L-29 en el Laboratorio de Desempeño de Operadores del Instituto de Tecnología de Iowa. El avión biplaza está equipado con sensores en la cabina para medir las respuestas fisiológicas del piloto, lo que da a los investigadores pistas sobre si el piloto depende de la IA o no. En realidad, el avión no está pilotado por una IA; en cambio, un piloto de seguridad en la cabina delantera actúa como un "servo actuador humano", ejecutando las entradas de control de vuelo generadas por una IA. Para el piloto evaluador en el asiento trasero, parece que la IA está realizando las maniobras de la aeronave.

“En una analogía con las 'millas de desacoplamiento' utilizadas en los automóviles autónomos, estamos registrando el tiempo de desacoplamiento, que sirve como métrica clave para el programa. Además, comenzamos a buscar técnicas de medición para ver hacia dónde apunta el jefe del piloto de evaluación, así como hacia dónde ir y sus ojos miran alrededor de la cabina ”, dijo Javorsek. "Esto nos permite ver cuánto está comprobando el piloto la autonomía mirando fuera de la cabina y comparando cuánto tiempo dedica a su tarea de gestión de batalla".

El programa ACE también está investigando dos estructuras independientes para un AI Battle Manager en lo que se consideraba el agente AlphaMosaic para BVR y comando y control de escala de campaña. En Scrimmage 1, estos dos agentes participaron en escenarios más complejos de Cruise Missile Defense (CMD) creados por APL. Los dos equipos contratados continúan refinando sus agentes y arquitecturas en preparación para la competencia mano a mano Scrimmage 3 al final de la fase.

Mirando más allá de las pruebas de aviones de subescala a fines de 2021, Calspan comenzó a modificar el primer entrenador a reacción L-39 a gran escala que será pilotado por la IA en duelos de combate de la vida real durante la Fase 3 del programa a fines de 2023 y 2024.

El primer paso es crear un modelo de rendimiento aerodinámico preciso del L-39 que el algoritmo de IA pueda usar para hacer predicciones, así como decisiones de maniobras tácticas. Una vez que el modelo aerodinámico esté completo, el L-39 se modificará por completo para que la IA pueda tomar el control de la aeronave.

viernes, 11 de septiembre de 2020

Entrenador turco Hurkus con simulador de IA

El jet turco Hurjet tiene un simulador basado en inteligencia artificial

Poder Aéreo




ANKARA, Turquía - Turkish Aerospace Industries dice que ha desarrollado el primer simulador basado en inteligencia artificial de Turquía, que se utilizará en las fases de diseño y desarrollo del Hurjet, un avión de ataque ligero diseñado localmente.

TAI dijo que el simulador de ingeniería, Hurjet 270, está diseñado para recopilar comentarios de los pilotos de prueba para hacer que el diseño del Hurjet sea “mejor, más sólido y más eficiente”. El simulador también está destinado a detectar fallas de diseño en la etapa de desarrollo. Los funcionarios de la compañía dijeron que el simulador contará con "resolución al nivel del ojo humano".



Atilla Dogan, subdirector general de diseño de aviones en TAI, dijo a la agencia de noticias estatal Anadolu que el Hurjet 270 ayudará a los ingenieros a mejorar el diseño de los algoritmos de control de vuelo y el software de aviónica basándose en los comentarios de los pilotos de prueba.


El entrenador armado Hurjet es una versión con motor a reacción del turbohélice Hurkus, el primer avión de entrenamiento básico autóctono de Turquía. TAI lanzó el programa Hurjet en 2018, con el objetivo de realizar el primer vuelo de la aeronave en 2022.



El Hurjet tendrá una velocidad máxima de Mach 1,2 y puede volar a una altitud máxima de 45.000 pies. La aeronave tendrá una carga útil máxima de 3.000 kg, incluidas municiones, radar y cámara.

El Hurkus-C, la versión armada de la variante básica Hurkus, cuenta con munición desarrollada localmente, incluidos CIRIT, TEBER, HGK y LGK. También puede utilizar bombas guiadas por INS / GPS, bombas convencionales, cohetes y cañones no guiados.



El Hurkus-C también cuenta con partes de fuselaje blindadas, un sistema de autoprotección, un enlace de datos, designación de objetivo láser, una cápsula electroóptica e infrarroja, un tanque de combustible externo y aviónica avanzada.

Con una carga útil de 1.500 kilogramos que se puede utilizar a través de siete puntos duros externos, el Hurkus-C puede realizar ataques ligeros y misiones de reconocimiento armado.

lunes, 4 de julio de 2016

WVR: Inteligencia artificial vence a as del aire

Por primera vez, la inteligencia artificial derrotó a un piloto de combate
Fue una paliza: el coronel Gene Lee, as del aire, fue derribado sistemáticamente por un sistema de inteligencia artificial que se ejecutaba en una computadora de bolsillo; por ahora, los encuentros ocurrieron en un simulador. Pero sólo por ahora
La Nación


Hace poco, una computadora llamada AlphaGo se quedó con el campeonato mundial de go, uno de los juegos más arduos para la inteligencia artificial. Como escribí en su momento, creo que los maestros Fan Hui y Lee Sedol realmente jugaron al go, pero la máquina, no, ni cerca.

Con todo, la noticia fue fuerte, desde el punto de vista de los avances de las mentes sintéticas. Esta semana, la Universidad de Cincinnati (UC), Estados Unidos, dio a conocer una novedad que pasó mayormente inadvertida, pero que resulta, en mi opinión, mucho más significativa que la de AlphaGo. En pocas palabras, un caza controlado por una computadora venció sistemáticamente a un veterano piloto de combate, el coronel Gene Lee. El invicto software de inteligencia artificial se llama ALPHA y -¿están sentados?- corrió en una Raspberry Pi. En serio: el as del aire, que ha entrenado a miles de pilotos estadounidenses, fue derrotado por una computadora del tamaño de una tarjeta de crédito que pesa 45 gramos y cuesta 35 dólares. O, dicho de otro modo, un piloto de guerra humano podría ser derribado fácilmente por un smartphone de gama media.



El coronel Lee intenta, sin éxito, vencer a su enemigo robótico. Foto: Lisa Ventre, University of Cincinnati

Por ahora, los combates ocurrieron en una simulación y, en lo sucesivo, el plan es que ALPHA siga colaborando en el entrenamiento de pilotos en los simuladores. Pero esto es por completo irrelevante; en un punto, para la inteligencia artificial el mundo real es indistinguible de una simulación. Es más, la realidad podría no ser sino una simulación, tesis que plantearon en formato ficción The Thirteenth Floor y The Matrix y que Elon Musk, fundador de Tesla Motor, se toma muy en serio .

Algunas reflexiones sobre estos enfrentamientos entre un hombre y una máquina, que ocurrieron en octubre. Primera, es de nuevo cierto que mientras el coronel estuvo combatiendo, la máquina se dedicó a aplicar un algoritmo (llamado genetic-fuzzy systems). Es decir, mientras Lee sudaba la gota gorda (declaró que terminaba cada día exhausto), la computadora se dedicaba a procesar unos y ceros. Como con el ajedrez o el go, ALPHA estuvo ausente de la batalla. Pero el impacto de esto es aquí brutal. ¿Qué puede haber más aterrador que una máquina capaz de matar sin tener ni la más mínima noción de que está matando?

Segundo, y también como en los juegos de mesa, ALPHA ganó por una combinación de poder de cómputo y algoritmos bien diseñados, cortesía de Psibernetix, fundada por Nick Ernest, ex alumno de la UC. ALPHA es capaz de encontrar el mejor plan táctico para cada situación 250 veces más rápido de lo que el coronel tarda en pestañear. O sea, Lee nunca tuvo ni la más mínima chance.

Nada nuevo hasta acá. Lo extravagante es que bastó el poder de cómputo de una Raspberry Pi para derribar a un piloto humano. No hizo falta una supercomputadora, como en el caso de los juegos de mesa. Si hiciera falta una supercomputadora, sería todavía imposible imaginar cazas robot. Pero, al menos en lo que concierne al módulo de combate, la UC ha demostrado que esto es perfectamente viable. En cuanto a lo demás, las computadoras vienen ayudando a volar aviones desde 1912.

Ahora bien, al revés de lo que ocurre con el ajedrez o el go, donde el que una máquina le gane a los humanos no sirve para nada, y al revés de lo que ocurriría con los vuelos comerciales, en los que descartar al piloto y el copiloto no alteraría de manera significativa las maniobras que esa nave puede realizar, en el caso de los aviones de combate, la situación es por completo diferente.

Si se elimina al piloto de guerra, la aeronave no sólo será más ligera y económica, sino que podrá realizar maniobras que resultarían intolerables para un ser humano. Podría virar sin importar la fuerza G o, para ser exacto, podría hacerlo a valores de fuerza G que un piloto entrenado no podría soportar o que podría soportar sólo por unos pocos segundos. De hecho, ALPHA no se enfrentó a Lee con todas sus destrezas habilitadas; le dieron menos misiles, sensores de menor capacidad y no pudo ir más allá de los límites humanos, mientras que Lee disfrutó de información privilegiada provista por un Awacs. Aún así, no le pudo ganar. Ni una vez.

Nota al margen, para no herir susceptibilidades: en un vuelo comercial, la presencia de los pilotos es imprescindible. Las computadoras pueden hacer cosas increíbles, pero como carecen de consciencia, resulta mucho más complicado inculcarles la ética, el valor o el miedo. Así, en una emergencia que teóricamente carece de solución, un piloto robot podría decidir que no hay nada que hacer. Y adiós. En cambio, un ser humano echaría mano de esa alternativa que tiene una chance en un millón e intentaría salvar la nave. Es lo que hizo, en 1983, el capitán Robert Pearson cuando el vuelo 143 de Air Canada, un 767-200 a su mando, se quedó sin combustible a 41.000 pies de altitud. Sin casi ninguna posibilidad de éxito, tomó la decisión de volar un jet de 140 toneladas como si fuera un planeador y salvó a los 61 pasajeros y los 8 tripulantes (incluido Pearson) al aterrizar sin mayores consecuencias en la estación Gimli, una pista de aterrizaje militar abandonada que, en el momento del siniestro, estaba siendo usada para carreras de coches.

Volviendo a nuestra Raspberry Pilot: hay algo mucho más importante en el hecho de que un avión de guerra no lleve tripulación, como ya ocurre con los drones militares. Si fuera derribado, no habría riesgo de que se pierda una vida. ALPHA nunca se eyectaría, porque, en rigor, no estaría ahí.

Como saben, los simuladores de vuelo, sobre todo los muy realistas, son mis videojuegos favoritos. El todavía inigualado Falcon 4, que sigue saludable gracias a la gente de Benchmark Sims, es tan exigente que se vendía aparte un curso de combate aéreo dictado por el piloto de F-16 Pete Bonnani. Casi lo primero que uno aprende de sus lecciones es que en esta clase de batalla no hay lugar para la creatividad. Te sabés las reglas, elegís la mejor táctica y la aplicás a una velocidad escalofriante sin cometer ni el más mínimo error. O terminás bajando en el ascensor de seda. Eso es todo. Y eso es, precisamente, lo que una máquina sabe hacer mejor.

La guerra después de la guerra

Es inevitable asociar la noticia, por otro lado, con Terminator y distopías de ese tipo. Bueno, en ese caso, la inteligencia artificial podría anunciar, con toda justicia, "Yo ya gané".

Pero aunque es cierto que con ALPHA se ha iniciado un camino que lleva a poner armas en manos de robots, mucho antes de que nos debamos enfrentar con esta situación (que quizá nunca ocurra), la noticia de la UC es muy disruptiva en otro aspecto. Si las máquinas se demuestran capaces de vencer a los pilotos humanos en todos los casos, sería el primer paso para robotizar por completo los conflictos armados. Dada la complejidad del combate aéreo, es poco probable que las otras fuerzas no vayan a seguir el ejemplo de ALPHA. En 2013, Google compró una empresa llamada Boston Dynamics, que, entre otras cosas, es proveedora de las fuerzas armadas estadounidenses. Se dedican a fabricar robots. Hola, ¿Sarah?

Tampoco es una novedad que los avances tecnológicos aplicados a la guerra cambian el equilibrio de poder. Ha ocurrido desde que esta especie, que se la pasa columpiándose entre el deseo de la paz y su incurable instinto destructivo, se organizó en tribus. El arco y la flecha, en el paleolítico superior; las catapultas griegas, en 400 AC; el cañón, en el siglo XIV; las ametralladoras, a finales del siglo XIX, y más modernamente, los tanques, los aviones, el radar, las armas nucleares y las bombas inteligentes.

ALPHA tiene todo para convertirse en otro peldaño en esta escalera, uno que podría alterar por completo el concepto de la guerra. Tan pronto una nación industrializada opte por robotizar sus fuerzas armadas, todas las otras con un poderío económico equivalente deberán hacer lo mismo; de lo contrario, se volverían obsoletas. En tales circunstancias, los enfrentamientos ya no serían entre personas. Ni siquiera serían entre robots. La pelea se daría en el terreno del software. El que tuviera los mejores algoritmos saldría victorioso. Por lo tanto, alcanzaría con simular los combates, que durarían milisegundos. Tal vez Lee y ALPHA sean recordados en un futuro posible como los que terminaron con la pesadilla de la guerra real. Incluso sin llegar a estos horizontes de ciencia ficción, el que los enfrentamientos armados queden a cargo de robots de guerra podría tener consecuencias políticas imprevisibles.

Por supuesto, las posibilidades de que la guerra se resuelva en una simulación son remotísimas, al menos en el mediano plazo. En primer lugar, porque la esencia del conflicto armado es que se desarrolle en la realidad, no en el espacio virtual. Además, la guerra es una industria de una escala difícil de concebir. El desarrollo del más moderno de los cazas estadounidenses, el F-35, ha costado alrededor de 1500 billones (sí, billones) de dólares. Entre paréntesis, es un lindo avión, lástima que está plagado de problemas; uno de los más recientes es que su radar se cuelga en vuelo. Nada práctico en un avión de combate.

Es muy improbable que semejante negocio se deje convertir en una simulación. Salvo, claro, que la próxima fase de esta industria resulte ser el desarrollo de algoritmos como el de ALPHA, y que el costo de una nueva generación de combatientes virtuales alcance las 12 cifras. Suena plausible. Hoy, Psibernetix tiene dos empleados, su fundador y David Carroll, programador y diseñador de software. Podrán decirme que es una simple casualidad, pero los hermanos Wright también eran dos al principio.