martes, 21 de junio de 2016

BVRAAM: AIM-120 AMRAAM (Parte 2)

Misil AIM-120 AMRAAM 

Parte 1 - Parte 2 - Parte 3

Descripción 

El AMRAAM esta dividido en cuatro secciones: guiado, ojiva, propulsión y controles. 

La unidad de guiado (Weapons Guidance Unit - WGU) consiste en el radomo, sensor, servos, transceptor, electrónica, INS (modelo LN-201), detector de blancos, armado y estructura. El grupo electrónico es el WGU-16B en el modelo A, WGU-41/B en el B y WGU-44/B en el modelo C. 

El misil es facilmente adaptable para usar electrónica de transistores con concepto modular para modernización rápida. 

Las cajas negras consisten en los sistemas de microonda del radar, seguidos del procesador de señales Watkins-Johnson de 30MHz (AIM-120A), despues el transmisor; receptor, piloto automático digital y bateria. Las funciones de auto-diagnóstico de los sistemas de navegación, piloto automático, radar, datalink, espoleta y sequenciador son controladas por el microprocesador. 

El guiado terminal es por radar activo con guiado inercial por navegación proporcional de medio curso. el guiado inercial y radar activo terminal permite capacidad "dispare-y-maniobre" para el caza o “dispare-e-olvida” para el misil permitiendo que la aeronave lanzadora realice maniobras evasivas en cuanto el misil se guia para el blanco. 

   
La antena móvil del radar monopulso de la banda I (8-10 GHz) tiene un transmisor de alta potencia con pocos lóbulos laterales y un procesador interno. El alcance es estimado en 10km contra un blanco del tamaño de un caza. El campo de visión es de grados y puede ser disparado +/-25 grados off-boresight. El radar permite guiado autónomo en el modo "dispare-y-olvida" siendo ligado al entrar en el alcance estimado. Usa PRF alto y si el blanco intenta protegerse con interferencia (jamming) y para blancos a grandes distancias, el sensor cambia del modo PRF al modo "home-on-jam" para contener la interferencia enemiga virando hacia la fuente de guiado y para atacar blancos volando bajo. 
 
El AMRAAM usa un sistema inercial LN-201 Inertial Reference Unit (IRU) derivada del LN-200 de la Northrop. 

La unidad de propulsión (Weapons Propulsion Unit - WPU) consiste de la fuselaje, motor, exhaustor y cono externo, mecanismo de disparo y armación con indicador de seguridad. 

El motor WPU-6/B de aceleración y sustentación es fabricado por la Alliant Techsystems (ex Hercules). Usa un propelente sólido de baja emissión de humo con hidroxyl y polibutadieno como propelente. El motor del AIM-120A pesa 70,3kg con 49kg de propelente. 

La unidad de control (Weapons Control Unit -WCU), o WCU-11/B, consiste en cuatro actuadores servos independientes y cuatro baterias de lítio-alumínio en paralelo. 

Las cuatro alas y alerones son destacables para facilitar el almacenamiento, manipulación y transporte. Las alas menores del modelo C son intercambiables con las alas mayores (sólo para el modelo C). 

La unidad de armas (Weapons Detonation Unit - WDU), o WDU-33/B, incluye una ojiva Chamberlain, mecanismo de armado FZU-49/B Mk3 Mod 5 y acelerador Mk 44 Mod 1. La sección de armas incluye un gancho para instalar en la cabidad. 

La ojiva anular pre-fragmentada de 23kg tiene 198 proyectiles retangulares (AIM-120A). La espoleta láser Kaman and Raymond direcciona la carga y puede detonar por impacto o proximidade. El alcance letal no fue informado, pero el NASAMS noruego tiene alcance mínimo de 300 metros debido al radio letal de la ojiva. El modelo AIM-120C5 usa una ojiva WDU-41/B con mas de mil fragmentos. 

El AMRAAM puede ser llevado en varios tipos de lanzadores (Missile Rail Launchers - MRL). Los lanzadores del F/A-18 son el LAU-127A/A y LAU-115. El LAU-128A/A y LAU-129A/A CRLs (Common Rail Launchers) son usados por el F-15 y F-16 que también pueden lanzar el Sidewinder, excepto en la punta de las alas del F/A-18. 

 
Detalles internos del AMRAAM. 

El AMRAAM puede ser llevado por lanzadores dobles por los F/A-18 y F-16. En la foto encima, el AMRAAM está instalado en el F/A-18A australiano junto con un par de ASRAAM. 

El AMRAAM tiene un sistema de monitoreamiento Built-in Teste (BIT) para verificar si todos los sistemas electrónicos estan funcionando. El BIT es usado en misiles dormidos antes de instalarse en la aeronave y antes del lanzamiento al enfocar el misil. 

El tiempo medio entre fallas (MTBF) es de 1.500 horas demonstradas en vuelos superando el requerimento de 450h. En noviembre de 1994, el misil pasó de 200.000 horas de vuelo debido a las zonas de exclusión en Bosnia (Deny Flight) y mostró ser bien confiable. 

La vida útil es estimada en 350-400 horas de vuelo y después es descartado o reformado. Los AMRAAM de los F-16 de Aviano en la operación Deny Flight llegaron a volar 600-700 horas. 

 
En el F/A-18E/F el AMRAAM dura 50 horas debido a las fuertes vibraciones. En el Sea Harrier dura menos de 50 horas pues también vibra mucho en las cabidades externas de las alas. 
 
El misil es llevado en un container All-Up-Round (AUR) donde caben cuatro misiles. Todos pueden ser reprogramados al mismo tiempo, a partir del modelo B, con un cordón umbilical a través del equipamento Common Field-level Memory Reprogramming Equipment (CFMRE). 

El costo de los componentes es dividido, aproximadamente, en guiado 68%, control 9%, espoleta 9%, ojiva 2%, propulsión 6% y fuselaje 6%. 

Especificaciones: 

 

La estructura del AMRAAM esta hecha principalmente de alumínio y titanio. Los materiales usados en cada parte son: 

Punta del radomo: Acero 17-4PH 
Radomo: piroceramica 9609 
Cobertura de la seción de guiado y fuselaje anterior: Titanio 6AL-4V 
Cobertura del fuselaje trasero: titanio 6AL-4V (vidrio después antena TDD instalada) 
Cobertura de la ojiva: Acero 4140 cubierto con epoxy 
Cobertura de la seción de propulsión: Acero carbono de alta resistencia D6AC IVADISED (Ion vapor deposited aluminum) 
Cobertura de sección de control: Acero 17-7PH 
Exaustor: Alumínio 6061 y Silicaphenloic liner 
Cobertura de fijación: Poliamida FibernitePI-750 o Kinel 4504 
Alas: Titanio 6AL-4V 
Prendedor de las alas: Acero 6431 
Alerones: Níquel y acero 17-4PH 
Cobertura de la superfície: Poliuretano resistente al solvente y químicos 

Versiones 

El modelo A fue descripto anteriormente. No es reprogramable y precisa cambiar el hardware directamente. Las variantes no tácticas son el CATM-120 para entrenamiento, el DATM-120 para manipulación en tierra y el JAIM-120 con sistemas de telemetria para tests y validación. Estan disponibles en las versión A, B y C. 

El AIM-120B tiene nuevo procesador digital, memória EPROM reprogramable, y hardware modernizado. El primer AIM-120B fue entregado en el fin de 1994. En esa época ya se pensaba en cambiar los tres giroscópios mecánicos por giroscópios láser y tal vez instalar un GPS. 

El Proyecto Have Dash permitió que el AMRAAM pudiese ser llevado por el F/A-22, pero también por cualquer otro caza. El resultado fue el programa AMRAAM P3I (Pre-Planned Product Improvement) dividido en varias fases. 

La Fase 1 es el modelo C con alas menores que permitia llevarlo en el F/A-22. Equivale al Lote 8 que es un AIM-120B con ala cortada y ECCM reprogramable. El primero fue entregado en 1996 y fue liberado para exportación en 2000. El AIM-120C usa nuevas tecnologias para actualizar y expandir las capacidades del sistema para alcanzar los requerimientos de los nuevos usuarios. Tiene nueva ojiva, motor mas potente, nueva lógica de la espoleta, algoritmo de guiado y nuevas contra-contramedidas (ECCM) reprogramables. 

La Fase 2 con el AIM-102C-4 usa una nueva ojiva mas letal y nuevas ECCM. La produción del modelo C-4 fue iniciada en agosto de 1999 con el Lote 12. 

El desarrollo de la fase 3 empezó en 1998 para un sensor de bajo costo, estudios de guiado doble con sensor IR y radar activo, motor mejorado, ojiva direccional y espoleta láser. 

El próximo misil de la serie en producción fue el AIM-120C-5 con motor mayor en 127mm para mejorar la cinemática fue iniciada en julio de 2000 y entregado en jujo de 2001. Es la versión actual en produción a partir del Lote 15. Fue ofrecido para la exportación a partir de mayo de 2000. 

El motor fue instalado en el espacio dejado por la nueva sección de control WCU-28/B mas compacta que la anterior. Resultó en una mayor eficiencia con mayor velocidad final y manobrabilidad, aparte de la nueva ojiva. La espoleta pasó a tener un detector de cuadrante para enfocar la carga de la ojiva. 

El misil ya realizó tests en 2003 derribando dos blancos protegidos por interferencia. Los electrónicos fueron reducidos sobrando 15 cm en el fuselaje. El misil estaba en tests en 2004. Deberia entrar en servicio en el fin de 2004 como parte del lote 20. 

El AIM-120C-6 debe estar disponible en 2006 y será especializada con un sensor mejorado para optimizar un cono de destrucción con la ojiva contra blancos ligeros y pequeños en intercepciones frontales con el F/A-22. El nuevo AMRAAM tendrá una nueva espoleta con un sistema de detección por cuadrante. 

La fase 3 podría tener sido semejante al ERAAM propuesto para el programa BVRAAM británico (actual Meteor) y podría estar en produción a partir del Lote 16. 

Otra versión internacional propuesta para el programa BVRAAM era el ERAM Plus (Extended Range Air-to-air Missile) que podría ser el AIM-120C-8. El ERAM tendria nueva electrónica de espoleta de la Thompson-Thorn semejantes al IRIS-T con un par de antenas de radar, y ojiva Diehl del AMRAAM Fase 2. El nuevo misil tendria una mejora de 80% en relación al FMRAAM con 50% del costo del FMRAAM. El ERAM se aprovecharía de los US$2,4 billones ya invertidos para desarrollar tecnologia para el AMRAAM, y del conocimiento de mas de 100.000 disparos simulados y mas de 1.200 disparos de tests y combate. 

Em 1995, a US Navy contrató a Alliant para mejorar el motor y aumentar el desempeño en 13%. Seria un motor apenas de aceleración al reves de aceleración y sustentación. El ERAM Plus teria motor de dos pulsos tipo boost-glide-boost. El motor ramjet de la Atlantic Research fue rechazado pues el misil no cabria en el F-22. 

Junto con la Raufoss noruega la Hughes testeó un motor oval sin perder estandarización. Fueron estudiados cuatro propulsores alternativas. 

El Programa Programmable Integrated Ordnance Suite (PIOS) realizado junto con el Reino Unido pretende tornar a los misiles aire-aire y superfície aire mas letales. El objetivo principal es mejorar la letalidad del AIM-9X, AMRAAM, ASRAAM y Meteor. La Fase I de viabilidad empezón en 1998. Fase II de demonstración de 48 meses inició tambien en ese año. El objetivo es crear una espoleta inteligente para direccionar la ojiva en el momento ideal, escoger el punto de impacto para desarrollar conceptos de ojivas direccionables. 

El Programa Advanced Area Defense Interceptor (AADI) pretende estandarizar un sensor y espoleta para el Standard, ESSM y AMRAAM para detectar blancos muy pequeños. El proyecto debe iniciarse en 2006. El proyecto Reactive Warhead también complementa el programa AADI y puede ser usado en el AGM-88 HARM. 

 
Una versión multinacional basada en el AMRAAM llamado FMRAAM (Future Medium Range Air-to-Air Missile) desarrollado en conjunto entre BAe y Hughes fue propuesta para el programa BVRAAM (Beyond-Visual-Rang Air-to-Air Missile) británico. El FMRAAM seria equipado con un motor ramjet de combustíble líquido europeo para mayor alcance y mayor velocidad media. La NEZ seria 250% mayor. La infra-estrutura y logística seria común con operadores AMRAAM. 
 
AIM-120C con alas menores. 

El AIM-120D o C-7, será la fase 4 inició el desarrollo en 2003 y con entrega esperada para el fin de la década. 

El C-7 tendrá nuevo software, datalink de via doble, mejor cinemática y capacidad de interceptar blancos en alto off-boresight. 

Un motor más pequeño será instalado en el espacio vacio dejado por la aviónica más compacta. Podrá usar combustible HTPE (hydroxyl-terminated polyether) de pulso doble. Tendrá un IMU mas actual y recibirá un GPS. Junto con el datalink de dos vias el misil podrá transmitir informaciones para la aeronave lanzadora. Los misiles actuales sólo reciben datos. Esto aumentará el envolvente y apoyará la intercepción off-boresight pudiendo atacar blancos del lado y tal vez atrás de la aeronave. 
Otro caza podrá controlar el misil permitiendo que la aeronave que dispare escape luego con una aeronave mas atrás controlando el míssil. El datalink de via doble podrá aumentar la efectividad en intercepción de larga distancia pues el misil envia informaciones del comportamento del blanco y la própia posición. Esto permite designación más allá del horizonte y yá fue demonstrado en el AMRAAM lanzado del suelo (CLAWS, ver adelante). Esta versión del datalink podrá ser usado en el Meteor y Patriot PAC-3. 

El C-7 mantendrá inicialmente el motor y la ojiva del C-5 mas tendrá procesadores comerciales, nuevo software y mejoria en el procesamento del señal del radar para mejorar a capacidad de contra-contramedidas. 

El segundo estadio de la Fase 4 debe ser iniciada en octubre de 2004 con el desarrollo de un nuevo motor en el valor de US$128 millones. 

El C-7 deve sustituir al AIM-54 Phoenix que será retirado de servicio en 2005 junto con el F-14D Bombcat. Esta versión fue propuesta para sustituir el AAAM que seria un nuevo misil que sustituiria al Phoenix y que fue cancelado en 1992. 

La USAF y a US Navy planean proyectar tres nuevos misiles aire-aire para mantener la supremacia aérea en el futuro. Despues de la introducción del AIM-120-C7 hasta el fin de la década, seran desarrollados mas un modelo del misil y un nuevo misil sustituirá a toda la serie AIM-120 AMRAAM. 

El AIM-120C-8, deberia iniciar el proyecto en 2003 con nuevo motor y entrega en 2010. Seria el Lote 18 y 19 con cinemática mejorada, propulsión por combustible gelatinoso que produce mas energia con mayor volumen interno útil. Nuevas tecnologias propuestas son un TVC llamado DMNTVC que será dos bocas móviles actuando junto con cuatro alerones móviles. 

A largo plazo la USAF y US Navy estudian un nuevo misil para sustituir el AMRAAM. El programa se llama Joint Dual Role Air Dominance Missile (JDRADM) y será usado contra blancos en tierra y en el aire equipando el F/A-22 y F-35 JSF, cazas actuales y UCAV. Tendrá propulsión mejorada, gran agilidad y letalidad, permitiendo intercepciones a larga distancia. 

 
Propuesta para el JDRADM. 

La USAF está evaluando el demostrador de tecnologia de misiles ramjet Variable Flow Ducted Rocket (VFDR). El misil tiene el tamaño del AMRAAM y cabe en el compartimento de armas del F/A-22 y F-35. Podrá sustituir y/o complementar a los misiles AIM-9x y AIM-120. Podrá tener capacidad de corto y medio alcance y capacidad aire-suelo, o con todas capacidades juntas. El trabajo fue iniciado en 1986 con test solo en 1997. 

 
Tests de vuelo del VFDR en un F-16. 
 
VFDR Versión ramjet del AIM-120 

Versiones Superfície-Aire 

El AMRAAM también tiene versiones superficie-aire (SAM). Noruega usa el Norweigan Advanced Surface-to-Air System (NASAMS). El NASAMS está operacional desde 1995. El nombre MIM-120A no es oficial. 

En el fin de la década de 80 Noruega emitió un requerimento para la compra de 20 sistemas y 320 misiles para defensa aérea a baja altitud (VSHORAD), con capacidad cualquier tiempo, resistente a contramedidas eletrónicas y grand capacidad de sobrevivencia contra aeronaves de supresión de defensas (SEAD). 

El alcance de interceptación era de 700 metros a 12km y altitud de 3.500 metros (preferencialmente de 6.000m). El sistema seria usado pelo Ejército (6-8 sistemas y 128 misiles) y Fuerza Aérea (8-12 sistemas y 192 misiles). 

El sistema seria integrado a los centros de Comando y Control (SHORADOC) que también controla los misiles Stinger y cañones 40mm. 

El NASAMS de la Kongsberg concursó con el misil VT-1 de la Loockhead que equiparía al Thomson-CSF Air Sys Crotale NG y Euromissile Roland M3S, el RBS-23 BAMSE, el Relampago de la Rafale (Barak autopropulsado) y el Rapier FSC. 

El AMRAAM tenía alcance de 20km, más del requerimiento exigido. Los intercepciones a baja altitude generalmente ocurren a 4-6km. Contra blancos cruzados el misil vuela una trajetoria en "J". Contra blancos múltiples dispara un misil para cada blanco. 

El ARMAAM arma en un segundo y el radar es activado luego que deja el lanzador. El alcance mínimo es determinado por la ojiva con radio letal de 300m. Helicópteros que se esconden pueden ser atacados por encima pues el misil tiene trayectoria alta y hace comba hacia en el blanco. La padronización con el AMRAAM que equipa los F-16 de la Fuerza Aérea favoreció su elección. 

El Rapier FSC tenía alcance muy corto. El Rapier Mk 2 tenía alcance mayor (8km) y capacidad de sustentar 30g´s. El VT-1 alcanza velocidad de Mach 3.5 y sustentaba 35g´s. 

La Fuerza Aérea de Noruega usa el NASAMS en dos baterias operacionales y tres en la reserva. Las baterias operacionales son la 51M en Bodo (primera operacional en 2001), 52M en Orland y 54M en Rygge. 

 
Cada bateria NASAMS tiene nueve lanzadores de seis mísiles, y puede interceptar 54 blancos en 12 segundos. La recarga lleva 20 minutos. Cada lanzador tiene a 25km del radar central TPQ-36La y un IRST de proyecto local. El alcance del radar TPQ-36A es de 75km. Futuramente será usado el radar MPQ-64. 

El NASAMS-II del Ejército debe estar operacional en 2004 con 12 lanzadores de 6 misiles para cada para División 2000 noruega. 

España compró el NASAMS de Noruega como off-set por la compra de la fragata F-100. El contrato de US$80 millones para cuatro radares AN/MPQ-64 Sentinel, cuatro centros de comando (FDC) y ocho lanzadores, pero no incluye los misiles. 

US Army testeó el AMRAAM en un lanzador Hawk modificado en 1995 y de un HMMWV (High-Mobility Multipurpose Wheeled Vehicle) o también llamado HUMRAAM ("Hummer-AMRAAM"). 

 
NASAM disparado de un lanzador HAWK. 

En el USMC, el HUMRAAM es conocido como CLAWS (Complimentary Low-Altitude Weapon System). 

El CLAWS es una arma de defensa aérea de baja altitud con alcance extendido para complementar al Stinger y Avenger. Es una arma cualquer tiempo, de grande tasa de disparo. Un HUMVEE puede llevar cinco misiles. 

El CLAWS substituirá al Avenger en dos batallones de defensa aérea (Low Altitude Air Defense Battalion). El costo del programa es de US$58 millones. El CLAWS era llamado Projeto 559 debido al costo de US$559 mil por vehículo. Un contrato de abril 2001 fue hecho para desarrollar el sistema que debe substituir al MIM-23 Hawk a partir de 2005. 

El pedido de propuestas (RFP) del CLAWS fue lanzado en 1999. La versión de la Raytheon fue escogida en 2000 contra la propuesta de la Boeing. El requerimento incluye interceptar blancos en un sector de 120 grados, con varios misiles disparados en 2-4 segundos. La torreta tiene azimut fija siendo levantada en 30 grados en la posición de disparo. Cada vehículo apunta para sector de responsabilidad. El radar activo del AMRAAM permite errores en 15 grads en elevación y 60-70 grados en azimut en relación al blanco. 

El lanzador será el LAU-128 y cualquer versión del AMRAAM podrá ser disparado. El lanzador es intercambiable con la torreta AN/TWQ-1 del Avenger. 

El requerimento del CLAWS surgió en 1992 con el "Advanced Low Altitude Air Defense Weapon" y el "Mobile Surface-to-Air Missile System" de 1993. El CLAWS respondió al requerimento en 1998 luego de tests en agosto de 1997. Un de los requisitos es ser transportable por el C-130. 

El CLAWS recibe datos de sistemas de comando y control y radares como el CWAR, AN/TPS-59, CEC/JCTN por el sistema Expeditionary Air Defense System (EADS) Remote Terminal Unit (RTU) y el datalinlk Ground Based Data Link (GBDL). El CLAWS es operado por dos hombres. 

El CLAWS será testeado en 2003. El USMC planea comprar 95 sistemas y 500 misiles con entrada en operación (IOC) en mayo de 2005. El USMC planea comprar un total de 29 unidades de tiro y 96 misiles inicialmente. 

El U.S. Army también tiene requerimento de un sistema HUMRAAM llamado Surface Launch AMRAAM (SLAMRAAM). El US Army tiene requerimento de 444 lanzadores. Em febrero de 2004 fue asignado un contrato en el valor de US$127 millones para la compra por el US Army. 

La Fuerza Aérea de la Dinamarca pretende substituir el HAWK en 2004. El AMRAAM concursa con Aster 30. El AMRAAM también debe substituir el SK-12 (SA-6) del Egipto. El AMRAAM también fue propuesta como arma para el programa FCS del US Army. 

La Raytheon está estudiando a instalación del AMRAAM en el blindado ligero LAV que será llamado de LVRAAM para proteción de fuerzas terrestres blindadas. 

 
Lanzador CLAWS. 
 
Centro de control en el SLAMRAAM. 
 
Cuando el USMC inició estudios para un sistema de defensa antiaérea de cabeza de puente pensaron en la adaptación del AMRAAM en el blindado anfíbio LVTP-7A1. El misil desembarcaría junto con a fuerza anfíbia. El misil seria designado de forma autónoma por un radar en el vehiculo y la decisión de disparo seria hecha por el tripulante en el vehiculo con apoyo del IFF y un rastreador visual. Despues del disparo el guiado es hecho por el radar del misil. 

El SLAMRAAM del US Army podrá ser suplementado por un misil con motor ramjet llamado de Army Extended Range Attack Missile (AERAM) debe cubrir blancos hasta a 100km contra 18km del SLAMRAAM. 

El ERAM (Extended-Range Active Missile) será una nueva versión del Standard que usará el mismo hardware y software del sensor del AMRAAM para disminuir costos. El alcance de intercepción también aumentará y incluye blancos mas allá del horizonte usando el método CEC (Cooperative Engagement Capability) pudiendo ser apuntado por otras plataformas como el E-2C. 

Defensa Contra Misiles Cruise 

El AMRAAM fue testeado como defensa contra misiles cruise en el programa J-LENS (Joint Land attack cruise missile Netted Sensor) del US Army. Los tests fueron en marzo de 2000 vectorado por un radar en un globo cautivo con acierto directo contra un drone simulando un misil cruise. 

El JLENS usa dos aerostatos (balones cautivos con radar) a 3000-4500m, operando a 100km de la frente de batalla. Un aerostato lleva un radar de vigilancia y otro un radar de rastreo e iluminación de blancos. El sistema permite aumentar en 700% a cobertura en relación a una bateria Patriot. Los aerostatos son usados para guiar misiles Patriot, Standard y AMRAAM en los testes. También es mas barato de operar que una aeronave de ala fija. En cuanto un aerostato gasta US$500/hora un E-3 AWACS gasta US$7000/h. 

Los EEUU estiman que existen 75 tipos de misiles cruise en servicio y mas de 42 en desarrollo. Por lo menos 82 países tienen un total de mas de 70 mil misiles en uso. La mayoria son misiles anti-navio, pero pueden ser convertidos para ataque terrestre por cerca de US$150 mil cada uno. Hasta los mismo UAVs pueden ser usados para ataque terrestre. 

 
Un ARMAAM disparado de un sistema CLAWS consigue un acierto directo (body-to-body kill) contra un drone BQM-34 simulando un misil cruise a baja altitud en la quinta misión en abril de 2000 del programa JLENS. El blanco estaba más allá de la linea de visión. 
 
El programa JLENS del US Army testeó el AIM-9X, AMRAAM y Stinger disparado de un HMMWV Missile Tracking Mount (MTM) de la Boeing

Sistema de Armas 
Traducción: Iñaki Etchegaray

lunes, 20 de junio de 2016

Pictorial: El An-22 con acercamiento (1/2)

Primer plano de un An-22 

An-22 es un transporte de carga internacional. Hemos tenido una gran oportunidad para entrar en el avión y un informe a nuestros lectores con imágenes. 

El plano de visión desde el exterior. 
 
La vista desde el aditamento. 
 
Los propulsores de los aviones son maravillosos. 
 
El sistema de combustible de un 22 consta de 20 tanques blandos. 
 
 
 
Vista inferior - tren de aterrizaje. 
 
 
 

 
Desde la cola. 
 
El control del motor se lleva a cabo por las palancas de control de combustible, las palancas de parada de emergencia, los botones de lanzamiento, los frenos de emergencia. 
 
 
La puerta de entrada se encuentra bajo el ala. 
 
 
  
 


English Russia

domingo, 19 de junio de 2016

FAA: Los Lincoln, brazo estratégico de la Nación

Los Avro Lincoln y Lancaster en la Argentina 


Rasante sobre la torre de control
  
Siendo fijado como blanco en prácticas de artillería antiaérea


En la Argentina 

Hacia fines de la década del ’40 se había hecho evidente la necesidad de renovar el ya obsoleto material en servicio en las Fuerzas Armadas y en especial el de la Aeronáutica Militar, que poseía materiales anticuados o de fabricación nacional, manufacturados en madera por la escasez de materiales estratégicos. Muchos factores importantes influyeron en la elección y las posibilidades de adquisición del mismo. Durante la Segunda Guerra Mundial, la neutralidad argentina sirvió a los fines de Inglaterra, beneficiada con los alimentos y materiales de primera necesidad que llegaban desde aquí. A partir del 4 de enero de 1945, la Fuerza Aérea experimentó un cambio fundamental en su estructura. En esta fecha, al crearse la Secretaría de Aeronáutica, la Aviación Militar Argentina pasó del ámbito del Ejército al de una institución constituida prácticamente como un ministerio del aire. Esta reestructuración de todos los medios aéreos de la Argentina, a excepción de la Aviación Naval, se produjo al quedar de manifiesto la importancia de la aviación como elemento fundamental para el logro del éxito en las operaciones de guerra evidenciadas en el gran conflicto que se estaba librando. Finalizado el conflicto, Inglaterra ofreció pagar la deuda contraida con la condición de que las divisas fuesen utilizadas dentro de su territorio; gracias a esto, la Argentina logró una importante suspensión del embargo hacia principios de 1947, cuando Gran Bretaña comunicó a los Estados Unidos su intención de tratar al país sudamericano de la misma manera que a los demás países de América Latina. Este anuncio coincidió con las negociaciones que se llevaban a cabo entre ambas naciones sobre la venta de los ferrocarriles, situación más que conveniente para que Gran Bretaña pudiera materializar los dos negocios: trenes y armas. Superados mayormente los inconvenientes políticos, la Argentina prosiguió con las negociaciones, las que se habían estancado desde principios de 1946. A pesar de las objeciones de los Estados Unidos, el gobierno británico aprobó todos los contratos contraídos con los fabricantes de armamento, que ascendían a una suma cercana a los 20 millones de libras esterlinas. En 1947, un grupo de representantes argentinos visitó Binbrook en busca de información y asesoramiento sobre las aeronaves que se hallaban en servicio en ese momento en la RAF; aunque el interés argentino en el Lincoln no era nuevo, la visita a este establecimiento fue fundamental, decidiéndose inmediatamente la compra de treinta bombarderos del modelo B Mk-I. De la totalidad de 45 bombarderos adquiridos, los 15 “Lancaster” (matriculados B-031 a B-045 en la Fuerza Aérea Argentina) habían prestado servicio en la RAF, mientras los 12 primeros “Lincoln” (matriculados B­-001 a B-012), aunque con identificación de la RAF, nunca prestaron servicio en la misma. En junio de 1947, el pedido de la Fuerza Aérea Argentina era ya un hecho, por lo que Avro comenzó con el alistamiento de los aviones requeridos con su armamento completo; sin embargo se tuvieron que solucionar algunos problemas surgidos del largo período de inactividad. 
Otro tema por resolver fue la poca experiencia de los pilotos argentinos en aviones de cuatro motores, por lo que a las primeras doce máquinas se las proveyó de mandos duales; también se optó por cambiar los motores Rolls Royce (RR) Merlin 68-A por otros que estaban siendo desarrollados en ese momento, así pues el B-005 sirvió como banco de pruebas de los modernos RR Merlin 621-15, concebidos para grandes aeronaves de transporte y luego adoptados en todos los Lincoln argentinos. Antes de la entrega a la FAA, algunos técnicos integrantes de la Avro viajaron a la Argentina para colaborar y entrenar al personal argentino en las tareas de operación en tierra y en algunos escalones primordiales de mantenimiento. El primer Lincoln en llegar al país fue el B-001 en setiembre de 1947, realizando vuelos sobre la Capital Federal y en particular sobre la Casa de Gobierno en Plaza de Mayo; una vez finalizados estos primeros vuelos de demostración, la máquina fue transportada en exposición a la Avenida 9 de Julio, en donde se exhibió como la atracción principal. La tarea de desarme no fue fácil, ya que el personal asignado para realizado no tenía la experiencia para llevado a cabo con la idoneidad necesaria; este tipo de trabajos nunca se había realizado en la Argentina, lo que repercutiría luego en la operatividad de esta aeronave. Sin embargo, tras un viaje de más de un día por tierra (se tuvieron que desmontar barreras ferroviarias, puentes, tendidos eléctricos, etc), el Lincoln arribó finalmente al centro de Buenos Aires. El resto de los bombarderos fueron llegando paulatinamente, tripulados por personal con amplia experiencia en volar aviones Lancastrian (Lancaster modificado) para líneas aéreas británicas, arribando el último avión en noviembre de 1948.

 

El emblema del servicio de bombardeo Estrategico de la FAA pintado en los Lincoln 
En servicio en Argentina 
Entre otros inconvenientes, estos aparatos debían utilizar un combustible, para esa época, especial e importado, la nafta de aviación 100/130. Era evidente la necesidad de producir este combustible en el país, por lo cual la Dirección General de Fabricaciones Militares (DGFM) en colaboración con YPF, se abocaron a la fabricación del mismo, lo que demandó un esfuerzo de singular magnitud. La V Brigada Aérea, con su dotación de aviones, intervino en innumerables operativos, algunos de los cuales se realizaron en combinación con otra unidades de la Fuerza Aérea. A partir de 1952 se comenzó con la realización de ejercitaciones realistas, al participar las aeronaves de bombardeo junto a los interceptores Gloster Meteor, tal es el caso de uno realizado en Tandil en 1952, en el que se emplearon los Avro Lincoln como fuerza de bombardeo y Gloster Meteor y Fiat G-55 como fuerza interceptora. La intención de este operativo fue llevar un ataque coordinado a la ciudad de Buenos Aires para comprobar la defensa aérea. 
Lo más significativo de la presencia de estos bombarderos pesados en la FAA en 1948 era que quedaban a su alcance prácticamente todas las capitales de los países del sur del Cono Sur, lo que proporcionaba a la Argentina una poderosa fuerza estrategica y disuatoria que era de una contundencia imponente si se le agregan los 100 jets Gloster Meteor.

 
Otro de los operativos importantes fue uno llevado a cabo en 1953 en el Dique San Roque, provincia de Córdoba. El mismo fue totalmente innovador, ya que se practicaron las tácticas de los famosos Dam Busters o “rompediques” de la RAF. Para llevarse a cabo debieron tomarse medidas especiales, entre ellas el reemplazo de la mira estándar por una especialmente diseñada; abrió el panorama para introducir novedosas posibilidades ofensivas en el futuro. La participación de los Lincoln se había hecho muy frecuente, en especial en operativos sorpresa sobre otras bases. Uno de los ejercicios más importantes fue el denominado “Soberanía”, consistente en el primer vuelo en escuadrilla al Litoral Marítimo Sur. Participaron doce Gloster Meteor, dos C-47, un Dove y tres Lincoln, y la intención fue evaluar la posibilidad de operar con reactores desde bases australes. En enero de 1960, un buque patrullero de la Marina detectó un submarino no identificado; a efectos de localizarlo y posteriormente neutralizarlo fueron comisionados dos Lincoln, los que luego de varios ataques lograron impactarlo, aparentemente sin graves consecuencias para el furtivo incursor. Gracias a su tremendo poder de fuego, los Lincoln se convirtieron en preciados elementos para reprimir en los intentos revolucionarios ocurridos en el país desde 1951 hasta 1962. 

 
El B-020 luce el esquema de pintura y marcas más común utilizado por los Lincoln en el país. 

El Lincoln B-010 con los planos rayados de naranja y la cola pintada del mismo color por el operativo Tritón I, realizado en Mar del Plata. Se puede observar el escudo en el morro. 
 
Lincoln sobreviviente en el museo de Aeroparque, ciudad de Buenos Aires. Obsérvese el Radar de bombardeo H2S bajo la trompa. 
 
Lancaster con todo el chaperío afuera, próximo a tocar pista en Villa Reynolds. Observar el inusual mimetizado. 

 
Un ejemplar operando desde Villa Reynolds 

 
El B-016 con su tripulación. Este ejemplar terminó en exposición en la V Brigada Aérea 
 
Esta foto fue tomada durante la Revolución Libertadora (16-19 Sept. 1955) en la BAN Cdte Espora. Son parte de los aviones cuyas tripulaciones se sumaron al movimiento.


De los 12 Lincoln iniciales, originalmente de la RAF, uno quedó en Inglaterra para ser modificado bastante drásticamente. Este avión, luego de ser comprado por la Fuerza Aérea Argentina, como todos los restantes a través del representante de Avro en el país, se decide transformarlo en un transporte de largo alcance y entrenador de navegación, considerando ya el uso a que sería destinado como medio de apoyo a la política antártica en desarrollo en ese entonces. Las modificaciones introducidas fueron llevadas a cabo por Avro en Inglaterra, y consistieron en colocarle nariz y cono de cola de Lancastrian, eliminándose todo el armamento, y la instalación de una cúpula de navegación celestial en el lugar de la torreta dorsal eliminada. La capacidad de combustible se incrementó, lIevándola de los originales 3.580 galones a 4.615 galones, mediante el agregado de un tanque en la nariz y de tres tanques de combustible más en el compartimiento de bombas. Además, se lo equipó con los mejores instrumentos de navegación de la época y con asientos adicionales para transportar hasta 12 pasajeros. El avión así transformado ha sido denominado por la mayoría de los autores como modelo Avro 695 "Lincolnian", pero en realidad esto no es exacto, ya que los Lincolnian fueron modificaciones efectuadas a los Lincoln para transformarlos en cargueros. Este avión siguió siendo un Avro 694 Lincoln, equivalente a una modificación similar realizada en un avión de la RAF, y que se denominó "Aries 11". La matrícula inicialmente asignada por nuestra Fuerza Aérea a este avión era B-003. Luego de las modificaciones hechas por Avro, realizó su primer vuelo en Inglaterra en julio de 1948, efectuándose el vuelo de traslado recién a fines de febrero de 1949, llegando a Morón en marzo. Por unos pocos meses es volado con su matrícula militar, hasta que por fin el 8 de febrero de 1950 es matriculado como civil en el Registro Nacional de Aeronaves, a nombre del Ministerio de Aeronáutica, recibiendo el indicativo LV-ZEI y poco después el nombre de "Cruz del Sur". A partir de ese momento la vida de este avión pasó a ser bastante agitada, pues intervino en varias campañas antárticas, por cuenta del Ministerio y luego como integrante de la FATA (Fuerza Aérea de Tareas Antárticas), realizando también algunos vuelos internacionales interesantes. Sin embargo, pese a su matrícula civil, siempre voló tripulado por personal de la Fuerza Aérea.





Ametralladoras gemelas de autodefensa de 12.7mm traseras 
 
El B-033....detrás, línea de DC 3/C47 y Bristol 170. 
 
El mismo B-033 y un mimetizado al estilo Lincoln... Fotos: Archivo W.M.B.
 

Tripulaciones y personal de apoyo del Lincoln a lo largo de los años




 

La vida operativa de estos bombarderos ingleses duró casi veinte años, desde 1948 hasta 1967, cuando el último “Lincoln” fue retirado de servicio. Estas nobles máquinas fueron reemplazadas en la V Brigada Aérea por los A-4B “Skyhawk”, pero en su función específica recién por los Canberra, a principios de los ‘70. 
Historial de los aviones argentinos (clic para ampliar)


Bibliografía 
Revista “Aerodeportes”. 
Revista “Aeroespacio”. 
Serie Aeronaves N°2, “Lincoln”, José y Oscar Rodríguez. 
“Enciclopedia de la aviación”, Editorial Delta. 



Fuentes
Choique
Fuerzas Aeronavales
Ayer Noticia, Hoy Historia
MUAN



sábado, 18 de junio de 2016

Aerodinámica: La física dentro de un cockpit

Se sirve una bebida en pleno vuelo. Lo que sucede después nos ha desconcertado
Por Olivia Cathcart - Wimp


Ya sea que usted está conduciendo en un coche o volar en un avión, un vehículo en movimiento es el último lugar donde se desea llevar a cabo una tarea delicada. Divertirse tratando de hacer un castillo de naipes o simplemente tratando de acorralar a un puñado de cacahuetes en la boca durante el viaje. Justo el otro día, me las arreglé para recubrir el interior de mi sedán con Coca-Cola Zero. Yo prefiero tirara toda mi bebida dinero de refresco en mi estómago y no en mi tablero de instrumentos.
Incluso en un avión, uno está obligado eventualmente a dar un paseo lleno de baches. He salpicados unas cuantas cucharadas de mi bebida en mi camisa volando en un 747 un par de veces. Sin duda, sería imposible para mojar mi garganta en un avión de combate, ¿verdad?
Un hombre decidió que necesitaba refrescarse mientras hacía vueltas de barril en el interior de un avión. Mira lo que sucede cuando este hombre se derrama una bebida en el aire.


viernes, 17 de junio de 2016

Aviación embarcada: Phantoms en Vietnam

Aviación Naval a través de las décadas
Phantoms en Vietnam del Norte
 

10 de septiembre 2011 a las 18:36


El F-4J Showtime 100 del VF-96 era el Phantom del teniente Randall Cunningham y el Teniente Willie Driscoll el cual volaron el día en que derribaron tres aviones MiG y se convirtieron en ases. El teniente Matt Connelly III y el teniente Tom Blonski volaban el F-4J Showtime 106 el mismo día, cuando derribaron dos aviones MiG. Tenga en cuenta los cuatro misiles AIM-9 Sidewinder, un par por debajo de cada ala, y los misiles guiados por radar AIM-7 Sparrow ubicados semi-empotrados debajo del fuselaje del Phantom (Foto de la Armada de EE.UU.) 

Atrapados en la batalla aérea más grande que jamás haya librado en Vietnam del Norte el 10 de mayo de 1972, el Showtime 106 era un objeto borroso en movimiento en un cielo lleno de aviones.

El Showtime 106 fue un F-4J Phantom II de la escuadrilla VF-96, Fighting Falcons, que operaba desde el portaaviones USS Constellation (CV 64) en el Golfo de Tonkin. En el asiento delantero estaba el piloto teniente Jospeh Matthew Matt Connelly III, de 28 años, el líder de una sección de vuelo lo que significa dos aviones.

En el asiento de atrás estaba el oficial de intercepción por radar (RIO) el teniente Thomas Joseph John Tom Blonsky, de 29 años. Ambos hombres habían egresados ​​de la Escuela de Armas de Combate de la US Navy, llamada TOPGUN. Como un informe oficial indicó más adelante, mientras que Showtime 106 volaba una patrulla de combate aéreo (CAP) para proteger la retirada de aviones de guerra de atacar un objetivo cerca de Hanoi, Blonsky mantuvo contacto visual con una formación de aproximadamente dieciséis aviones de combate enemigos y advirtió a la fuerza de ataque de retirarse de la amenaza inminente .

Vietnam del Norte había mandado varias docenas de cazas MiG-17 y MiG-21. El MiG-17 estaba una generación atrás del Phantom, pero algunos estadounidenses temían a los más nuevos MiG-21s. Empujados en el cielo por dos turborreactores de flujo axial de 17.900 libras con postcombustión General Electric J79-GE-10, el Phantom pesaba 10 veces más que el ágil MiG-17, pero un piloto como Connelly podría lanzarse en todo el cielo como una varilla incandescente y el RIO Blonsky podía ver a su vez en el magnífica sistema de radar AWG-10 en un arma secreta para dar a la tripulación del Showtime 106s una mejor información situacional que sus enemigos. Hoy, otros dos pilotos de la Marina, el teniente Randall Cunningham y el teniente William Willie Driscoll, en un avión del mismo portaaviones llamado Showtime 100, iban a derribar tres aviones MiG para convertirse en ases, pero tendrían que ser rescatados y mojados en el proceso.

No había mucho de esto en sus mentes de Connelly y Blonsky quienes habían estado volando juntos por dos años y los dos estaban en el segundo crucero de combate en Vietnam cuando se encontraron en medio de una pelea de perros al tratar de proteger a la retirada de una fuerza de ataque de F-4s, A- 6 Intruders, y A-7E Corsair IIs.

Lo qué notó Connelly, desde el principio, era que ningún misil tierra-aire se acercaban a ellos. Eso significaba que los MiGs del Vietnam del Norte habían sido colocado en estado de alerta en el aire por casualidad sobre el objetivo ese día, un blanco en las afueras de Hanoi conocido como Duoung Hai. Connelly llevó su compañero de ala, el teniente Aaron Campbell, en lo que se estaba convirtiendo en una pelea de perros peluda, como los aviadores navales la llaman, compleja y a muy alta velocidad. Connelly miró hacia abajo para ver una retirada de Corsair II con dos MiG-17, presionando en su posición vulnerable de las seis en punto.

Campbell rodó sobre los dos MiGs. Justo en ese instante, la pantalla de radar Blonskis se quedó en blanco. Disparó un AIM-9 Sidewinder, que no necesitan una guía radar. Uno de los dos MiG-17 se detuvo, evitó el Sidewinder por una distancia considerable, y evitó chocar con Connelly y Campbell. En medio de esta confusión, los aleros se separaron y Showtime 106 estaba solo cerca del centro de una pelea de perros.


El teniente Matt Connelly III (derecha) se describe la batalla aérea en la que él y su oficial de intercepción del radar, el teniente Tom Blonsky, derribó dos aviones MiG. Foto cortesía de la colección Robert F. Dorr  

Herido en ambas piernas por fuego antiaéreo, el piloto del VA-163 "Saints" Lt. jg Denny Earl aterrizó su A-4E Skyhawk a bordo del USS Oriskany (CV 34) el 20 de octubre de 1967, en el Golfo de Tonkin. La barrera de emergencia aseguró que Earl podría subir a bordo en el primer intento. Seis días más tarde, este mismo Skyhawk, BuNo 149959, fue derribado sobre Hanoi. Su piloto, el capitán de corbeta. John S. McCain, pasaría los próximos 5 1/2 años como prisionero de guerra. Foto de U.S. Naval History and Heritage Command 

La Armada describió que Connelly enfrentó a aeronaves superiores en número, al presionar en reñidos ataques. Connelly se encontró detrás de otro MiG-17. El MiG se estabilizó y Connelly disparó un misil de infrarrojos, por segunda vez.

El Sidewinder salió de su carril bajo el ala del Phantom, dió un gran salto en una nebulosa de gases de escape blanco, voló recto y verdaderamente se estabilizó por su tándem conjunto de aletas de cruz, y viajó a una corta distancia para ir directamente hasta el tubo de escape MiGs. Exactamente en el instante en que el MiG-17 estalló en llamas de color rojo anaranjado, el piloto fue lanzado hacia arriba y hacia fuera como un corcho de una botella de vino. Connelly no sabía si el piloto de Vietnam del Norte se eyectó o simplemente fue expulsado fuera de su MiG por la fuerza de la detonación de explosiónde la ojiva de fragmentación del Sidewinders. Nadie vio un paracaídas.

Connelly se comprometió con otro MiG-17 en lo que más tarde él denominó como un calco del enfrentamiento anterior. Él se aferró a la posición de los MiG seis en punto y vió a su adversario repetir su maniobra de enemigos anteriores rodando en la posición de las alas a nivel. Por tercera vez, Connelly disparó un Sidewinder. Al parecer, en un primer momento voló alejándose, pero detonó lo suficientemente cerca como para hacer estallar la cola de los MiG. Connelly y Blonsky vieron al piloto saltar.

Con dos victorias aéreas confirmadas, Connelly y Blonsky rompieron en otro MiG-17 hasta que el indicador de combustible les advirtió que estaban en el momento "bingo" de combustible para volver a la cubierta inclinada del portaaviones Constellation. Connelly y Blonsky se encontraban en postcombustión, cruzando la costa y en dirección al portaaviones, poco antes de Cunningham y Driscoll completaron su lucha por el día y estaban siendo rescatados del Golfo de Tonkin.

Los equipos Phantom volvieron a la cubierta de soporte a tiempo para ver Cunningham y Driscoll sean derribados por un SAM después de convertirse en ases muy húmedos, para volver al Constellation gracias a un helicóptero CH-46 Sea Knight. El parte total de guerra para ese día fue de nueve MiGs derribados, dos Phantoms perdidos, con uno de los dos equipos de rescatados. El comandante de la marina de guerra a cargo de la misión de ese día, el comandante. Gus Eggert, se unió a Connelly, Blonsky, Cunningham y Driscoll en recibir la Cruz de la Marina estadounidense el segundo premio más alto por su valentía.

Defense Media Network

Interesados en esta entrada pueden acceder a una descripción más detallada de esta batalla aérea en este enlace