sábado, 4 de enero de 2025

Bombardero pesado: Kawasaki Ki-91

Bombardero pesado Kawasaki Ki-91





El Kawasaki Ki-91 fue un bombardero pesado japonés desarrollado por Kawasaki Aircraft Industries durante los últimos años de la Segunda Guerra Mundial. Fue un bombardero pesado de la misma categoría que el Nakajima G8N desarrollado para la Armada Imperial Japonesa.
El Ki-91 se presentó como un bombardero de cuatro motores, propulsado por motores Mitsubishi Ha-214 de 2500 CV cada uno y equipado con una cabina presurizada. Con una anchura de 48 metros y una longitud de 33 metros, el Ki-91 era un avión más grande que el Boeing B-29. Aunque tenía un alcance proyectado más largo que el B-29, solo era 4 toneladas más pesado que el avión estadounidense. Sus armas defensivas eran inusualmente pesadas para los bombarderos japoneses porque tuvieron que transportar un total de 12 cañones de 20 mm.
A finales de 1944, se estaba construyendo un prototipo. Sin embargo, el desarrollo fue brutalmente interrumpido cuando las redadas del B-29 en la planta de Kawasaki destruyeron la herramienta en febrero de 1945.
La situación en Japón es ahora desesperada, el proyecto fue abandonado.



Desarrollo

A principios de 1943, tras la cancelación del Nakajima Ki-68 y el Kawanishi Ki-85 debido al fallo del Nakajima G5N, Kawasaki respondió a la exigencia del Ejército Imperial Japonés de un bombardero de largo alcance de tamaño y rendimiento similares al B-29 Superfortress con el Ki-91. Al igual que el G5N, el Ki-68 y el Ki-85, el Ki-91 debía ser capaz de lanzar ataques al territorio continental de Estados Unidos desde Japón. En abril de 1944, se construyó una maqueta de madera para su inspección y en mayo se ordenó la producción del primer prototipo. La construcción del prototipo comenzó en junio, pero los primeros ataques del B-29 en Japón estaban en marcha a partir de ese mes. En febrero de 1945, el primer prototipo del Ki-91 estaba completo en un 60 por ciento cuando un ataque aéreo del B-29 dañó las instalaciones de la prefectura de Gifu donde se estaba construyendo el prototipo del Ki-91, lo que detuvo el programa.

Diseño

El Ki-91 fue un diseño de bombardero pesado similar en tamaño y carga de bombas al B-29 Superfortress y al Consolidated B-32. Tenía una envergadura y un fuselaje mayores que el B-29 y el B-32, y contaba con una cabina presurizada para permitir vuelos a gran altitud. El prototipo no iba a tener cabina presurizada, pero los aviones de producción se construirían con ella.


Presupuesto

Datos de [ 1 ]

Características generales

  • Tripulación: 8
  • Longitud: 32,97 m (108 pies 2 pulgadas)
  • Envergadura: 47,9 m (157 pies 2 pulgadas)
  • Altura: 9,99 m (32 pies 9 pulgadas)
  • Área del ala: 223,99 m2 ( 2.411,0 pies cuadrados)
  • Peso vacío: 33.999 kg (74.955 lb)
  • Peso bruto: 57.999 kg (127.866 lb)
  • Planta motriz: 4 × motores de pistón radial Mitsubishi Ha-214 Ru de 18 cilindros refrigerados por aire, 1.900 kW (2.500 hp) cada uno
  • Hélices: hélice de velocidad constante de 4 palas


Rendimiento

  • Velocidad máxima: 580 km/h (360 mph, 310 kn) a 9.808 m (32.178 pies)
  • Alcance: 9.000 a 10.000 km (5.600 a 6.200 millas, 4.900 a 5.400 millas náuticas)
  • Techo de servicio: 13.500 m (44.300 pies)
  • Tiempo hasta la altitud: 8.000 m (26.000 pies) en 20 minutos y 30 segundos

Armamento

  • Armas:
12 ametralladoras de 20 mm (0,787 pulgadas) (8 en una configuración de montaje de cañón doble y 4 en una configuración de montaje de cañón cuádruple)
  • Bombas: hasta 4.000 kg (8.800 lb) de bombas



viernes, 3 de enero de 2025

Evolución de la familia de misiles X-59 rusoviéticos

Evolución de la familia de misiles X-59





Misiles X-59 (en primer plano) y X-59M (al fondo). Foto: MilitaryRussia.ru

A principios de los años ochenta, la aviación de combate soviética recibió el último misil guiado aire-superficie, el Kh-59. Esta munición tenía un alto rendimiento y amplias capacidades de combate, lo que llevó a su rápido desarrollo. Como resultado, surgieron varias modificaciones del misil original con diversas características y ventajas sobre el modelo básico.

Modelo básico

El futuro misil Kh-59 fue desarrollado en la primera mitad de los años setenta como parte del trabajo experimental de diseño denominado "Ovod". El desarrollador principal del proyecto fue el MKB "Raduga" de la ciudad de Dubna, actualmente parte de la Corporación "Armas de Misiles Tácticos" (KTRV).

El propósito del proyecto de I+D Ovod era crear un nuevo sistema de misiles para bombarderos tácticos existentes y futuros. Su objetivo era permitir a la aviación atacar una amplia gama de objetivos terrestres a distancias de al menos 35-40 km. Según algunas fuentes, también se desarrollaba una modificación especial del sistema y del misil para ser utilizado por bombarderos estratégicos.

El desarrollo del Ovod y el Kh-59 se completó a mediados de los años setenta. Las pruebas de diseño de vuelo comenzaron en 1975 y las pruebas estatales concluyeron en 1979. El misil Kh-59, con portadores como los aviones Su-17M y Su-24M, confirmó las características calculadas y se recomendó para su adopción en servicio.

En 1980, el complejo Ovod fue adoptado para su uso en el bombardero Su-24M. En 1982, se integró oficialmente al Su-17M4. Sin embargo, el Su-24M, más moderno y con ventajas importantes, fue considerado el principal portador.


Su-17M4 como portador del misil Kh-59. El contenedor APK-9 está suspendido bajo el fuselaje, y el misil bajo el ala derecha. Foto: MilitaryRussia.ru

Posteriormente, los misiles Kh-59 y el complejo Ovod fueron utilizados en varios ejercicios y demostraron su alto potencial. Existe información sobre su uso en operaciones de combate en Afganistán y Chechenia. Bajo condiciones climáticas favorables que no interferían con los sistemas de guía, los productos alcanzaban los objetivos previstos con precisión.

Parte técnica

El complejo Ovod incluía varios dispositivos principales, siendo el más importante el misil guiado Kh-59, responsable de la destrucción directa del objetivo. También se desarrolló un contenedor suspendido APK-9 con dispositivos de control y comunicación. Los sistemas de navegación y puntería del avión portador se utilizaban para detectar objetivos y controlar el misil.


Misil antibuque Kh-59MK con buscador de radar. Foto Wikimedia Commons

El primer modelo del Kh-59 presentaba un cuerpo cilíndrico con un cono transparente hemisférico en la nariz. Tanto en la parte delantera como trasera había conjuntos de alas en forma de cruz. Las alas traseras estaban equipadas con timones para control en vuelo. El misil tenía una longitud total de 5,4 m, un diámetro de 380 mm y una envergadura de 1,26 m. Su peso de lanzamiento era de 760 kg.

Estaba equipado con un motor de combustible sólido de dos etapas con modos de arranque y crucero. La velocidad máxima alcanzaba los 1000 km/h, y su alcance máximo, dependiendo de la altitud y velocidad del lanzamiento, era de 40-45 km.

Sistema de guía TV del misil Kh-59M. Foto: Wikimedia Commons

El Kh-59 utilizaba un sistema de guía combinado. El vuelo al área objetivo se realizaba mediante el sistema de control inercial SNAU-59. Luego se activaba el sistema de comando televisivo Tekon-1. El misil estaba equipado con el sistema Tubus-2, que podía rastrear el objetivo y transmitir una señal de video al avión portador. El operador podía controlar el vuelo o activar la guía automática. Las pruebas mostraron un error circular probable de no más de 1-2 m.

El misil portaba una ojiva explosiva-cumulativa de 148 kg, capaz de destruir estructuras terrestres fortificadas o grandes objetivos superficiales.



Producto X-59MK2. Foto Vitalykuzmin.su

Modernizaciones

Ya en los años ochenta comenzaron los trabajos para mejorar el complejo Ovod y el misil Kh-59. Esto resultó en nuevas versiones, como el Kh-59L, que proponía un sistema de guía láser, aunque no progresó más allá de la fase de pruebas. Posteriormente, el Buró de Diseño Raduga introdujo una modernización profunda que incluyó un motor turborreactor, dando lugar al Kh-59M, adoptado en 1988.

Misiles posteriores

En los años noventa se desarrolló una versión antibuque (Kh-59MK) con un alcance extendido de hasta 285 km, gracias al motor TRDD-50B y un radar ARGS-59. Más tarde, en 2009, se presentó el Kh-59MK2, con un fuselaje cuadrado y mejoras significativas en los sistemas de guía, alcanzando un alcance declarado de 290 km.




La familia Kh-59 ha evolucionado significativamente durante más de 40 años, con múltiples modernizaciones y adaptaciones que la han convertido en una pieza clave del arsenal de la aviación táctica rusa. Se espera que esta línea continúe siendo desarrollada y mejorada en el futuro.


jueves, 2 de enero de 2025

SAM: Sistemas de misiles antiaéreos británicos (1/2)

Sistemas de misiles antiaéreos británicos

Parte 1 || Parte 2
Revista Militar (original en ruso)




El trabajo en los primeros misiles antiaéreos británicos comenzó durante la Segunda Guerra Mundial. Como calcularon los economistas británicos, el costo de los proyectiles de artillería antiaéreos consumidos fue casi igual al costo de un bombardero caído. Al mismo tiempo, era muy tentador crear un interceptor piloto remoto de una sola vez que garantizara la destrucción del reconocimiento o bombardero a gran altitud enemigo.

El primer trabajo en esta dirección comenzó en 1943. El proyecto, llamado Braikemina (English Brakemine), preveía la creación del misil antiaéreo guiado más simple y económico.

Como sistema de propulsión, se utilizó un grupo de ocho motores de combustible sólido de misiles antiaéreos no guiados de 76 mm. Se suponía que el lanzamiento se realizaría desde la plataforma de los cañones antiaéreos de 94 mm. Misiles de guía transportados en el haz del radar. La altura estimada de la lesión debía alcanzar los 10.000 m.

A finales de 1944, comenzaron los lanzamientos de prueba, sin embargo, debido a numerosos fallos de funcionamiento, el trabajo de desarrollo de misiles se retrasó. Después de que terminó la guerra, debido a la pérdida de interés de los militares en este tema, se detuvieron los fondos para el trabajo.

En 1944, la compañía Fairey comenzó a trabajar en la creación de un misil antiaéreo de combustible sólido controlado por radio "Stud" (inglés Stooge - simulador). Como aceleradores de lanzamiento, se utilizaron varios motores de misiles antiaéreos de 76 mm. Cuatro motores de cohetes no guiados Swallow de 5 pulgadas sirvieron como motores de marcha.


SAM "Stud"

La financiación del trabajo fue realizada por el departamento naval, que necesitaba un medio eficaz para proteger a los buques de guerra de los ataques de los kamikazes japoneses.

En las pruebas que comenzaron en 1945, el cohete alcanzó una velocidad de 840 km / h. Se fabricaron y probaron 12 misiles. Sin embargo, en 1947, todo el trabajo sobre este tema se detuvo debido a una clara falta de perspectivas.

Sobre los misiles antiaéreos en el reino de la isla recordados después del advenimiento de las armas nucleares en la URSS. Los bombarderos soviéticos Tu-4 de largo alcance, que actúan desde aeródromos en la parte europea del país, podrían alcanzar cualquier objeto en el Reino Unido. Y aunque los aviones soviéticos tendrían que volar sobre el territorio de Europa occidental, saturados de defensa aérea estadounidense, sin embargo, tal escenario no podría ser completamente excluido.

A principios de los años 50, el gobierno británico asignó fondos significativos para modernizar los existentes y desarrollar nuevos sistemas de defensa aérea. De acuerdo con estos planes, se anunció una competencia para la creación de un sistema de defensa aérea de largo alcance que podría combatir a los prometedores bombarderos soviéticos.

A la competencia asistieron English Electric y Bristol. Los proyectos presentados por ambas empresas, en términos de sus características, fueron en gran medida similares. Como resultado, el liderazgo británico en caso de falla de una de las opciones decidió desarrollar ambas.

Los cohetes creados por English Electric - Thunderbird ("Petrel" en inglés) y Bristol - "Bloodhound" ("Hound" en inglés) fueron incluso muy similares en apariencia. Ambos misiles tenían un cuerpo cilíndrico estrecho con un radomo cónico y una unidad de cola desarrollada. Se instalaron cuatro propulsores sólidos de lanzamiento en las superficies laterales de los misiles. Para la orientación de misiles de ambos tipos, se suponía que debía usar el radar radar "Ferranti" tipo 83.

Inicialmente, se suponía que el lanzador de misiles Thunderbird usaría un motor de propulsión líquida de dos componentes. Sin embargo, los militares insistieron en usar un motor de combustible sólido. Esto retrasó un poco la adopción del complejo antiaéreo y limitó sus capacidades en el futuro.


SAM Thunderbird


Al mismo tiempo, los cohetes de combustible sólido eran mucho más simples, seguros y económicos de mantener. No requerían una infraestructura engorrosa para repostar, entregar y almacenar combustible líquido.

Las pruebas del cohete Thunderbird, que comenzó a mediados de los años 50, a diferencia de su competidor, el misil Bloodhound, se desarrollaron sin problemas. Como resultado, el Thunderbird estaba listo para ser adoptado mucho antes. En este sentido, las fuerzas terrestres decidieron abandonar el apoyo al proyecto de Bristol, y el futuro del misil antiaéreo Bloodhound estaba en duda. El sabueso fue salvado por la Royal Air Force. Los representantes de la Fuerza Aérea, a pesar de la falta de conocimiento y numerosos problemas técnicos, percibieron un gran potencial en un cohete con motores de propulsión líquida ramjet.

El Thunderbird entró en servicio en 1958, por delante del Bloodhound. Este complejo reemplazó los cañones antiaéreos de 94 mm en los regimientos de defensa antiaérea pesados ​​36 y 37 de las fuerzas terrestres. Cada regimiento tenía tres baterías antiaéreas del sistema de defensa aérea Thunderbird. La batería incluía: designación y orientación del objetivo del radar, puesto de control, generadores diesel y 4-8 lanzadores.

Para su época, el lanzador de misiles de combustible sólido Thunderbird tenía buenas características. Un misil con una longitud de 6350 mm y un diámetro de 527 mm en la variante Mk 1 tenía un alcance de puntería de 40 km y un alcance de 20 km. El primer sistema de misiles de defensa aérea S-75 de masa soviética tenía características similares de alcance y altitud, pero utilizaba un cohete cuyo motor principal funcionaba con combustible líquido y un oxidante.

A diferencia de los misiles antiaéreos soviéticos y estadounidenses de primera generación, que usaban un sistema de guía de comando por radio, los británicos desde el principio planearon un cabezal de referencia semi-activo para los sistemas de defensa aérea Thunderbird y Bloodhound. El radar de iluminación del objetivo se utilizó para capturar, rastrear y guiar misiles al objetivo, iluminó el objetivo para el GOS de un misil antiaéreo, que apuntaba a la señal reflejada desde el objetivo. Este método de guía tenía mayor precisión en comparación con el comando de radio y no dependía tanto de la habilidad del operador de guía. De hecho, para la derrota fue suficiente para mantener el rayo del radar en el blanco. En la URSS, los sistemas de defensa aérea con dicho sistema de guía S-200 y "Square" aparecieron solo en la segunda mitad de los años 60.

Las baterías antiaéreas formadas inicialmente sirvieron como guardia para importantes instalaciones industriales y militares en las Islas Británicas. Después de adaptarse a una condición de trabajo y adoptar el sistema de defensa aérea Bloodhound, que se encargó de defender el Reino Unido, todos los regimientos de misiles antiaéreos de las fuerzas terrestres con el sistema de defensa aérea Thunderbird fueron transferidos al Ejército del Rin en el FRG. 



En las décadas de 1950 y 1960, los aviones a reacción de combate se desarrollaron a un ritmo muy rápido. En este sentido, en 1965, el sistema de defensa aérea Thunderbird se modernizó para mejorar el rendimiento de combate. El radar de seguimiento y guía de pulso fue reemplazado por una estación más potente y resistente al ruido que opera en el modo de radiación continua. Debido al aumento en el nivel de la señal reflejada desde el objetivo, fue posible disparar a objetivos que vuelan a una altura de hasta 50 metros. El cohete en sí también fue mejorado. La introducción de un nuevo motor de marcha más potente y potenciadores de arranque en la variante Thunderbird Mk. II permitió aumentar el alcance de tiro hasta 60 km.

Pero las capacidades del complejo para combatir objetivos de maniobra activa eran limitadas, y representaba un peligro real solo para los bombarderos voluminosos de largo alcance. A pesar del uso de misiles propulsores sólidos altamente avanzados con buscador semiactivo como parte de este sistema de defensa aérea británico, no se usó ampliamente fuera del Reino Unido.


En 1967, Arabia Saudita compró varias modificaciones de Thunderbird Mk eliminadas del servicio en el Reino Unido. I. El interés en este complejo mostró Libia, Zambia y Finlandia. Los finlandeses fueron enviados a probar varios SAM con PU, pero más allá de esto, el asunto no avanzó.

En los años 70, el Thunderbird comenzó a eliminarse gradualmente a medida que llegaban nuevos sistemas de baja altitud. El comando del ejército llegó a la conclusión de que la principal amenaza para las unidades terrestres no eran los bombarderos pesados, sino helicópteros y aviones de ataque que este complejo bastante voluminoso y de baja movilidad no podía combatir de manera efectiva. Los últimos sistemas de defensa aérea Thunderbird fueron retirados del servicio en las unidades de defensa aérea del ejército británico en 1977.

El destino del competidor, el sistema de defensa aérea Bloodhound de Bristol, a pesar de las dificultades iniciales con el desarrollo del complejo, fue más exitoso.

En comparación con el Thunderbird, el misil Bloodhound era más grande. Su longitud era 7700 mm y un diámetro de 546 mm, el peso del cohete superó los 2050 kg. El alcance de lanzamiento de la primera opción fue un poco más de 35 km, que es comparable al alcance de tiro del sistema de defensa de combustible sólido estadounidense MIM-23B HAWK, mucho más compacto y de baja altitud.


SAM "Bloodhound"


El SAM "Bloodhound" tenía un diseño muy inusual, ya que un sistema de propulsión marchaba utilizaba dos motores Ramjet "Tor", que funcionaban con combustible líquido. Se montaron motores en marcha en paralelo en las partes superior e inferior del casco. Para acelerar el cohete a la velocidad a la que podían operar los ramjets, se utilizaron cuatro propulsores de combustible sólido. Los aceleradores y parte del plumaje se reiniciaron después de que el cohete se aceleró y los motores de marcha comenzaron a funcionar. Los motores de marcha de flujo directo dispersaron el cohete en la sección activa a una velocidad de 2.2 M.

Aunque el mismo método y radar de iluminación que el utilizado en el sistema de defensa aérea Thunderbird se utilizó para apuntar a los misiles Bloodhound, el equipo terrestre del Hound era mucho más complicado que el equipo terrestre del Burevestnik.

Para determinar la trayectoria óptima y el momento del lanzamiento del misil antiaéreo como parte del complejo Bloodhound, se utilizó una de las primeras computadoras de producción británicas, Ferranti Argus. Diferencia con el sistema de defensa aérea Thunderbird: en la batería antiaérea Bloodhound, se proporcionaron dos radares de objetivos, que permitieron lanzar todos los misiles en una posición de disparo a dos objetivos aéreos enemigos con un intervalo corto.

Como ya se mencionó, el desarrollo de los misiles Bloodhound fue muy difícil. Esto se debió principalmente al funcionamiento inestable y poco confiable de los motores ramjet. Los resultados satisfactorios de la operación de los motores de marcha se lograron solo después de aproximadamente 500 pruebas de fuego de los motores Thor y lanzamientos de pruebas de misiles, que se llevaron a cabo en el sitio de prueba australiano de Woomera.



A pesar de algunas deficiencias, los representantes de la Fuerza Aérea acogieron favorablemente el complejo. Desde 1959, el sistema de misiles de defensa aérea Bloodhound ha estado en servicio de combate, cubriendo bases aéreas en las que se desplegaron bombarderos Vulcan de largo alcance británicos.

A pesar del mayor costo y complejidad, las ventajas del Bloodhound fueron un excelente rendimiento de fuego. Lo que se logró por la presencia en la batería de fuego de dos guías de radar y una gran cantidad de misiles antiaéreos listos para el combate en posición. Alrededor de cada radar de iluminación había ocho lanzadores con misiles, mientras que los misiles se controlaban y guiaban desde un solo puesto centralizado.

Otra ventaja significativa de los misiles Bloodhound en comparación con el Thunderbird fue su mejor maniobrabilidad. Esto se logró debido a la ubicación de las superficies de control cerca del centro de gravedad. El aumento en la velocidad de giro del cohete en el plano vertical también se obtuvo cambiando la cantidad de combustible suministrado a uno de los motores.

Casi simultáneamente con el SAM Thunderbird Mk. II, la Fuerza Aérea de la Real Fuerza Aérea entró en el Bloodhound Mk. II Este sistema de defensa aérea superó en muchos aspectos a su rival originalmente más exitoso.



El misil antiaéreo del Bloodhound modernizado se hizo 760 mm más largo, su peso aumentó en 250 kg. Debido al aumento en la cantidad de queroseno a bordo y al uso de motores más potentes, la velocidad aumentó a 2.7M y el rango de vuelo hasta 85 km, es decir, casi 2.5 veces. El complejo recibió una nueva y potente guía de radar antiinterferencias del Ferranti Type 86 "Firelight". Existía la posibilidad de rastrear y disparar objetivos a baja altitud.


Radar Ferranti Tipo 86 "Firelight"

En este radar había un canal de comunicación separado con el misil, a través del cual la señal recibida por el jefe de referencia del misil antiaéreo se transmitía al puesto de control. Esto permitió la selección efectiva de objetivos falsos y la supresión de interferencias.

Gracias a la modernización cardinal de los misiles complejos y antiaéreos, no solo aumentó la velocidad de los misiles y el alcance de la destrucción, sino que también aumentó significativamente la precisión y la probabilidad de alcanzar el objetivo.

Al igual que los sistemas de defensa aérea Thunderbird, las baterías Bloodhound sirvieron en Alemania Occidental, pero después de 1975 todos regresaron a su tierra natal, ya que el liderazgo británico decidió una vez más fortalecer la defensa aérea de las islas.

En ese momento, en la URSS, los bombarderos Su-24 comenzaron a ingresar al armamento de los regimientos de bombardeo de primera línea. Según el comando británico, habiendo penetrado a baja altitud, podrían lanzar ataques de bombardeo repentinos sobre objetivos estratégicamente importantes.

Las posiciones fortificadas se equiparon para los sistemas de misiles de defensa aérea Bloodhound en el Reino Unido, mientras que la guía de radar se montó en torres especiales de 15 metros, lo que aumentó la capacidad de disparar a objetivos de baja altitud.

Bloodhound disfrutó de cierto éxito en el mercado extranjero. Los australianos fueron los primeros en recibirlos en 1961, era una variante del Bloodhound Mk I, que sirvió en el Continente Verde hasta 1969. Los siguientes fueron los suecos, que compraron nueve baterías en 1965. Después de que Singapur obtuvo su independencia, los complejos del 65 ° escuadrón de la Royal Air Force permanecieron en este país.




SAM Bloodhound Mk.II en el Museo de la Fuerza Aérea de Singapur

En el Reino Unido, los últimos sistemas de defensa aérea Bloodhound fueron retirados del servicio de combate en 1991. En Singapur, estuvieron en servicio hasta 1990. Los Bloodhounds duraron más tiempo en Suecia, habiendo servido durante más de 40 años, hasta 1999.

Poco después de la adopción de los sistemas de defensa aérea de la Marina Real de Gran Bretaña del sistema de defensa aérea de corto alcance Sea Kat, el comando de las fuerzas terrestres se interesó en este complejo.

Según el principio de funcionamiento y diseño de las partes principales, la variante de tierra, llamada Tigercat (Tigercat inglés - marsupial marten o tigre gato), no difería del sistema de defensa aérea Sea Kat. El desarrollador y fabricante de las versiones terrestres y marítimas del sistema de defensa aérea fue la compañía británica Shorts Brothers. Para adaptar el complejo de acuerdo con los requisitos de las unidades de tierra, Harland participó.

El sistemas de defensa aérea Tigercat: un lanzador con misiles antiaéreos y sistemas de guía se ubicaron en dos remolques que remolcaban vehículos de campo a través de Land Rover. Un lanzador móvil con tres misiles y un puesto de guía de misiles podría viajar en carreteras pavimentadas a velocidades de hasta 40 km / h.


PU SAM Tigercat

En la posición de disparo, el poste de guía y los lanzadores se colgaron de los Tigercats sin separación de la transmisión de la rueda y se conectaron entre sí mediante líneas de cable. La transición de viajar al combate tomó 15 minutos. Al igual que en el sistema de defensa aérea de la nave, se cargaron 68 kg de misiles en los lanzadores manualmente.

En la estación de orientación con el lugar de trabajo del operador, equipado con equipos de comunicación y vigilancia, había un conjunto de equipos informáticos analógicos para generar comandos de guía y una estación para transmitir comandos de radio al cohete.

Al igual que en el complejo marino Sea Cat, el operador de guía, después de la detección visual del objetivo, "capturaba" y guiaba el misil antiaéreo, luego de lanzarlo a través de un dispositivo óptico binocular, controlando su vuelo con la ayuda de un joystick.

Operador de orientación SAM "Tigercat"

Idealmente, la designación del objetivo se llevó a cabo desde el radar de la encuesta de situación en el aire a través del canal de radio VHF o por equipos de observadores ubicados a cierta distancia de la posición SAM. Esto hizo posible que el operador de orientación se preparara para el lanzamiento por adelantado y desplegara el lanzador de misiles en la dirección deseada.

Sin embargo, incluso durante los ejercicios, esto no siempre funcionó, y el operador tuvo que buscar e identificar el objetivo de forma independiente, lo que provocó un retraso en la apertura del fuego. Dado el hecho de que el lanzador de misiles Tigercat voló a una velocidad subsónica, y a menudo se persiguió el disparo, la efectividad del complejo en aviones de combate a reacción no era alta cuando se puso en servicio en la segunda mitad de los años 60.

Después de pruebas bastante largas, a pesar de las deficiencias identificadas, el sistema de misiles de defensa aérea Tigercat fue adoptado oficialmente por el Reino Unido a fines de 1967, lo que causó una gran emoción en los medios británicos, impulsado por el fabricante para pedidos de exportación.


Página en una revista británica con una descripción del sistema de defensa aérea Tigercat


En las Fuerzas Armadas británicas, los sistemas Tigercat se suministraron principalmente a unidades antiaéreas, que anteriormente tenían cañones antiaéreos Bofors de 40 mm en servicio.

Después de una serie de campos de tiro en aviones de destino controlados por radio, el comando de la Fuerza Aérea era bastante escéptico sobre las capacidades de este sistema de defensa aérea. La derrota de los objetivos de alta velocidad y maniobras intensivas era imposible. A diferencia de los cañones antiaéreos, no se podía usar de noche y en condiciones de poca visibilidad.

Por lo tanto, la edad del sistema de defensa aérea Tigercat en las fuerzas armadas británicas, a diferencia de su contraparte naval, fue de corta duración. A mediados de los años 70, todos los sistemas de defensa aérea de este tipo fueron reemplazados por sistemas más avanzados. Incluso el conservadurismo británico, la alta movilidad, el transporte aéreo y el costo relativamente bajo de equipos y misiles antiaéreos no ayudaron.


A pesar de que el complejo estaba desactualizado a principios de los años 70 y no correspondía a las realidades modernas, esto no impidió que vendiera los sistemas de defensa aérea Tigercat retirados del servicio en el Reino Unido a otros países. El primer pedido de exportación vino de Irán en 1966, incluso antes de que el complejo fuera adoptado formalmente en Inglaterra. Además de Irán, los Tigercat fueron adquiridos por Argentina, Qatar, India, Zambia y Sudáfrica.

El uso de combate de este sistema de defensa aérea era limitado. En 1982, los argentinos los desplegaron en las Malvinas. Se cree que lograron dañar a un Sea Harrier británico. Lo cómico de la situación es que los complejos utilizados por los argentinos antes que estaban en servicio en el Reino Unido y después de la venta se usaron contra los antiguos propietarios. Sin embargo, los marines británicos nuevamente los regresaron a su patria histórica, capturando varios sistemas de defensa aérea intactos.

Además de Argentina, el Tigercat fue utilizado en combate en Irán durante la guerra Irán-Iraq. Pero no hay datos confiables sobre los éxitos militares de los cálculos antiaéreos iraníes. En Sudáfrica, que está llevando a cabo hostilidades en Namibia y el sur de Angola, el sistema de defensa aérea Tigercat, que recibió la designación local Hilda, sirvió para proporcionar defensa aérea para bases aéreas y nunca se lanzó para objetivos aéreos reales. La mayoría de los sistemas de defensa aérea de Tigercat fueron retirados del servicio a principios de la década de 1990, pero en Irán continuaron formalmente en servicio al menos hasta 2005.


martes, 31 de diciembre de 2024

UAV MALE: IAI Eitan

IAI Eitan




IAI Eitan



Tipo    Vehículo aéreo no tripulado
Vehículo aéreo no tripulado de vigilancia y reconocimiento
Fabricante    IAI
Estado    En servicio
Usuario principal    Israel
Coste unitario    35 millones de $ en 20111​ (precio del avión)
Desarrollo del    IAI Heron


El IAI Eitan (איתן – "firme"), también conocido como Heron TP, es un vehículo aéreo no tripulado (UAV) de reconocimiento desarrollada en Israel por la división Malat de IAI, es una versión más reciente del IAI Heron, tiene una envergadura de 26 metros.2​
Historia

En abril de 2004, la revista de las Fuerzas Aéreas de Israel, anunció la existencia del programa y divulgó que dos prototipos ya volaban. En marzo del año siguiente, la empresa estadounidense Aurora Flight Sciences anunció una empresa conjunta con IAI para fabricar el avión bajo el nombre Orión., se esperaba tener una unidad operativa durante 2007, pero a mediados de aquel año no se sabía nada del proyecto.

El Eitan fue revelado públicamente en rueda de prensa en la base aérea de Tel Nof el 8 de octubre de 2007. Los sensores utilizados en esta ocasión incluyeron un radar de apertura sintética (SAR) montado en un pod sobre el vientre del avión, un equipo multisensor colocado bajo su morro , y dos interceptores de señales (SIGINT). Puede llevar sensores adicionales en su cola y ser reabastecido en el aire El Análisis de la configuración que se presentó a los medios de comunicación sugiere un avión diseñado para misiones de penetración profunda. Sin embargo, en la rueda de prensa un funcionario IAF declaró que IAI y EL IAF habían probado " todas las clases de cargas útiles, en todas las clases de esquemas de configuración. " además de inteligencia, vigilancia, adquisición objetivos, y reconocimiento (ISTAR), además de localización de misiles estratégicos. Un informe expuso Israel desplegó Eitans en su ataque aéreo de 2009 contra un presunto convoy iraní de armas con destino a Gaza que viajaba por Sudán.6​ En febrero de 2010 las Fuerzas Aéreas israelíes revelaron su nueva flota de Eitans.7​ la escuadrilla 210, fue inaugurada en Tel Nof en diciembre de 2010.

Desarrollo

En abril de 2004, la revista de la Fuerza Aérea israelí anunció la existencia del programa e informó de que ya se estaban realizando dos prototipos. En marzo del año siguiente, la empresa estadounidense Aurora Flight Sciences anunció una empresa conjunta para comercializar el avión bajo el nombre de Orion. Aurora esperaba tener un aparato en vuelo durante 2007, pero a mediados de ese año, la empresa no había publicado nada más sobre el proyecto. Mientras tanto, surgieron informes de un "primer vuelo" del Eitan en Israel el 15 de julio de 2006, a pesar de los informes anteriores de que el avión ya había estado volando dos años antes. A finales de enero de 2007, Yedioth Ahronoth informó de otro anuncio aparentemente contradictorio, que indicaba que el vuelo inaugural tendría lugar en los próximos días.

El Eitan fue presentado públicamente en un evento para los medios de comunicación en la base aérea de Tel Nof el 8 de octubre de 2007. Los sensores instalados en esta ocasión incluían un radar de apertura sintética (SAR) montado en una cápsula en la panza del avión, una carga útil multisensor transportada bajo su morro y dos conjuntos de inteligencia de señales conformadas (SIGINT). Se pueden transportar sensores adicionales en los extremos de los brazos de cola. El análisis de la configuración presentada a los medios sugiere que se trata de un avión destinado a funciones de penetración profunda y capacidad de procesamiento SIGINT a bordo. Sin embargo, en el evento para los medios de comunicación un funcionario de la IAF declaró que la IAI y la IAF habían probado "todo tipo de cargas útiles, en todo tipo de esquemas de configuración". Aparte de su función de inteligencia, vigilancia, adquisición de objetivos y reconocimiento (ISTAR), el Eitan también puede utilizarse para reabastecimiento aéreo y funciones armadas, incluida la defensa contra misiles y el ataque estratégico de largo alcance.

Diseño

El Eitan es un UAV de altitud media y larga autonomía (MALE), que puede operar a altitudes superiores a las del tráfico aéreo comercial y cuenta con capacidad para todo tipo de clima, sistemas de deshielo, sistemas de despegue y aterrizaje automáticos (ATOL) y aviónica triple redundante. Es un monoplano de ala alta con voladizo y alas de gran relación de aspecto. Los brazos se extienden hacia atrás desde las alas y llevan colas gemelas unidas por un estabilizador horizontal común. Las unidades principales del tren de aterrizaje triciclo se retraen en los brazos de cola y la rueda de morro se retrae en el fuselaje. Un solo motor turbohélice está montado en el fuselaje trasero, impulsando una hélice de propulsión. La construcción es de materiales compuestos.


Eitan en el Paris air show de 2007

Historial operativo

Un informe afirmó que Israel desplegó Eitans en su supuesto ataque aéreo de 2009 contra un supuesto convoy de armas iraníes con destino a Gaza que viajaba a través de Sudán.

En febrero de 2010, la Fuerza Aérea israelí presentó su nueva flota de Eitans. La primera unidad que operó el modelo, el Escuadrón 210, fue inaugurada en Tel Nof en diciembre de 2010. En enero de 2012, un dron Eitan se estrelló cerca de Hafetz Haim durante las pruebas de nuevas cargas útiles; no se reportaron heridos.

Las FDI no hacen comentarios sobre el armamento de los drones, pero los informes describen que el Eitan se utiliza para "funciones armadas" con misiles "unidos a los puntos duros del ala", así como para la adquisición de objetivos. Su uso durante varias operaciones supuestamente ayudará a la IAI, propiedad del gobierno, a comercializar sus últimos modelos de drones como "sistemas probados en combate".


Exportaciones

En 2010, IAI ofreció el Eitan, bajo un acuerdo de colaboración con Rheinmetall, en pos de la necesidad a largo plazo de la Fuerza Aérea Alemana de un UAV "Saateg" MALE. El 21 de mayo de 2014, IAI firmó un acuerdo con Airbus para unirse en una licitación para un contrato puente para suministrar a las fuerzas armadas alemanas el Heron TP desde 2015 hasta 2020. Un contrato actual entre las empresas para suministrar el Heron a Alemania está previsto que expire en 2015. Airbus dijo que el gobierno alemán tendría la opción de una opción de compra o un contrato de arrendamiento para el sistema. El Escuadrón Barón Rojo de la Fuerza Aérea israelí también está proporcionando entrenamiento a los operativos alemanes (además de los operativos israelíes) para operar estos UAV.

En 2011, Francia seleccionó el IAI Eitan para el ejército francés. El acuerdo fue cancelado más tarde en noviembre de 2011 por el senado francés y los fondos se asignaron a un diseño conjunto franco-británico de UAV MALE.

La Real Fuerza Aérea de Gran Bretaña consideró la compra de vehículos aéreos no tripulados IAI Eitan en 2012.

India finalizó el acuerdo de 10 Heron TP armados por 400 millones de dólares, que se sumarían a la flota ya existente de Heron desarmados de la Fuerza Aérea de la India. Sin embargo, la propuesta de adquirir 10 Heron TP armados no avanzó debido a las restricciones israelíes a la transferencia de tecnologías avanzadas que tendrían que estar integradas en los drones. Una fuente israelí le dijo a FlightGlobal en 2017: "Las restricciones que el Ministerio de Defensa israelí impone a la exportación de este avanzado UAV (Heron TP) son muchas, y en una competencia tan reñida puede ser un factor crucial".

El Ejército de la India compró un total de 4 drones Heron TP a Israel en 2020.

En mayo de 2020, Grecia firmó un acuerdo para el arrendamiento de 3 Heron TP por 39 millones de euros. Como parte del acuerdo, el IMOD de  arrendar el sistema Heron en su configuración marítima a Grecia durante tres años, con opción de compra del sistema una vez finalizado el período de arrendamiento.

Exportación


Alemania: IAI ofreció el Eitan conforme a un acuerdo de colaboración con Rheinmetall que cumpliese los requerimientos del UAV MALE "Saateg" de las Fuerzas Aéreas alemanas.
Francia: Francia ha seleccionado al Eitan para un nuevo contrato9

Especificaciones técnicas

Características generales


    Tripulación: 0
    Carga: 2.000 kg
    Longitud: 13 m
    Envergadura: 26 m
    Planta motriz: 1× Pratt & Whitney PT6A.
        Potencia: 900 kW (1,200 hp)

Rendimiento


    Radio de acción: +7400 km
    Alcance en combate: 36 h



 

domingo, 29 de diciembre de 2024

Armas Argentinas: Bomba planeadora FAS-850 “Dardo 2”

La bomba inteligente argentina FAS-850 “Dardo 2”


Bien sabido es que los medios aéreos de Argentina se encuentran en inferioridad clara con respecto a los actores regionales del momento. Las instituciones castrenses del país llevan adelante esfuerzos notorios para paliar la situación. La bomba FAS-850 “Dardo 2” es un claro ejemplo.



Vista general de la bomba “Dardo”, que potenciará los medios de combate nacionales.

Existe un programa de bombas inteligentes stand-off llevado a cabo por la Dirección General de Investigación y Desarrollo (DIGID), dependiente de la Fuerza Aérea Argentina (FAA), con el objetivo de desplegar capacidades técnicas y humanas que permitan lograr el desarrollo de armamento de gran alcance, acorde con la filosofía moderna. Atendiendo especialmente a soluciones que posean un alto grado de componentes y piezas nacionales, se inició el programa Fuerza Aérea Sistemas (FAS) 850, que tuvo su punto de partida con la bomba Dardo I, que era un material lanzable stand-off asistido por un cohete que le confería un alcance de 15 km., siendo su peso de 227 kg.


Las “Dardo” han sido probadas extensamente en los A-4AR de la FAA y los “Super Etendard” de la Aviación Naval.

Con posterioridad evolucionó a la Dardo 2, que es una bomba lanzable desde el aire inteligente con sistema de alas plegables, que permitió desarrollar capacidades en numerosas disciplinas concurrentes con el diseño de equipamientos stand-off de última generación. Todo el conocimiento y la capacitación tuvo que ser planificada por mentes autóctonas, ya que era casi imposible obtener información sensible para el proyecto. Gracias a la formación y experiencia acumulada durante tantos años en el desarrollo y mantenimiento de armamento, fue y es posible trabajar en este modelo de equipos.

Los prototipos iniciales de esta bomba planeadora cuentan con una longitud de 2.630 mm. y un diámetro máximo de 400. El cuerpo se asemeja a un paralelepípedo que en su parte frontal se va ahusando, para terminar en una antena de telemetría y tubo pitot. En su interior, desde adelante hacia atrás se alojan un tanque de nitrógeno comprimido, el sistema neumático, las baterías, el transmisor de telemetría; por detrás de las alas la computadora de abordo, un secuenciador, el módulo de motores de control y un paracaídas, este último para permitir su recuperación tras las pruebas en vuelo.

Según los primeros datos públicos, el peso de este ingenio puede variar entre los 250 y los 400 kg., dependiendo de la carga útil empleada, que puede ser única, múltiple, FAE (Fuel Air Explosive) u otras. En su parte superior la bomba dispone de dos alas metálicas, que se encuentran plegadas hacia atrás sobre el cuerpo y que se extienden cuando empieza la caída libre, luego de ser lanzada. Se encuentran unidas en su raíz en una especie de placa que también dispone de dos cáncamos NATO 14”, que sirven para su fijación al soporte.

En la parte posterior del cuerpo, que en las versiones iniciales culmina en forma plana y que internamente aloja un paracaídas, se encuentran cuatro aletas que nacen en los vértices de esta suerte de paralelepípedo. Inicialmente se emplearon las aletas traseras de los misiles Rafael Shafrir II con la finalidad de aprovechar sus rolerones, pero estos no fueron efectivos, debido a que no tenían la velocidad necesaria para su correcto funcionamiento, por lo que en las versiones posteriores se modificaron.

Tecnologías y características

También en la parte trasera, pero dispuestas horizontalmente, dispone de dos aletas estabilizadoras planas de forma rectangular. En la parte superior trasera hay un pequeño carenado con su parte frontal compuesta por una sección transparente, que permite la colocación de una cámara de video. Dependiendo de la versión por delante y detrás de ese carenado posee otros dos más pequeños de forma rectangular, que son los correspondientes a las antenas de GPS (Global Positioning System) de 50 Hz. En un primer momento esta bomba solo disponía de uno de ellos, primero sobre la parte frontal superior y después reubicado en la trasera.


Gráfico de la disposición interna del ingenio.

Tras la antena que se encuentra más atrás se sitúa el sistema de apertura del paracaídas. A la izquierda de la antena delantera del GPS se inserta lo que parece ser un pin de seguridad. Ubicadas en el lateral derecho del cuerpo hay dos hendiduras que disponen de distintas entradas. En una de estas se encuentra una perilla que tiene la inscripción, apenas visible, 110 V, una entrada circular y una para USB (Universal Serial Bus). En el mismo lateral, pero más adelante, también posee un indicador con agujas que, a juzgar por la ubicación del sistema neumático, parece indicar que se trata de un manómetro. En el lateral opuesto está un indicador de ángulo de ataque.

La aeronave portadora que se encuentre configurada con este tipo de bombas puede efectuar el lanzamiento hasta los 40.000 pies (12.192 m.), con una velocidad igual o menor que 0,9 Mach y el alcance es de 60 km., con un CEP (Circular Error Probable) de 15 m. Según las previsiones preliminares en una segunda etapa, con la adición de un motor cohete se esperaba que la altura de lanzamiento se redujera a 25.000 pies (7.620 m.), contando con la capacidad de batir blancos que se encuentren en el orden de los 100-150 km. con un CEP que ronda entre los 6 ó 7 m. El sistema de guía empleado es por inercial/GPS, mientras que la designación del blanco puede ser previa o durante el vuelo.

La carga de esta bomba en el vector lanzador es posible gracias al adaptador para Dardo II-Mod.3, que básicamente consta de una pieza principal que es el cajón soldado, sobre el cual se montan los siguientes componentes: un carenado frontal en la parte superior trasera, una tapa de inspección, mientras que en la inferior trasera se sitúa el conjunto de antena de GPS. Sobre la parte superior se encuentran los conectores delantero y trasero y en la inferior las horquillas para cables armadores. Del cajón pende una unidad Alkan 165, que es donde va fijada la bomba. Este adaptador se fija a la aeronave mediante dos cáncamos NATO 14”, permitiendo la estandarización del material acorde a criterios logísticos y operativos comunes.

Con los resultados obtenidos en las pruebas con los prototipos de las primeras se evolucionó a la Dardo 2-B de configuración de guerra (carga única). Incorpora como carga el cuerpo de bomba Mk.82 o BK-BR 250, que se encuentra situado debajo de lo que parece ser un soporte confeccionado con una lámina metálica, que a su vez está unido a la placa donde se fijan las alas y los cáncamos. Externamente el cuerpo queda cubierto por un carenado plástico de sección rectangular, que en su parte inferior copia la curvatura del cuerpo de la bomba.


FAS 850 “Dardo 2C”

Caminando con la “Dardo II”

En lo que respecta a la sección de cola, se ha confeccionado también en material plástico. A diferencia de las primeras versiones, ésta termina en forma ahusada y no plana, ya que no dispone de paracaídas de recuperación. También se han integrado las aletas que nacen en los vértices, que pasaron a ser del mismo material plástico, abandonando las anteriores correspondientes a los misiles Shafrir. En lo que respecta a las dimensiones, según lo informado se conservan la longitud y diámetro máximo de la versión preliminar y lo mismo sucede con la altura, velocidad de lanzamiento y el alcance, mientras que el CEP estimado es de 15 m. En esta versión el peso es de 280 kg.

La designación del blanco puede ser tanto previo como durante el vuelo, mientras que la navegación es por inercial y GPS. En esta bomba también se ha integrado la espoleta de proximidad por efecto Doppler desarrollada en el marco del proyecto FAS 1020. Se conecta con el cuerpo de la bomba mediante un prolongador. Esta espoleta es compatible con bombas frenadas FAS 250 y lisas BK BR 50, 125 y 250 y las de la serie Mk. Para su funcionamiento emplea el principio de radio frecuencia/Doppler, permitiendo un tiempo de armado que va desde los 2 a los 12 segundos, mientras la altura nominal de explosión es de 10 m.

Las condiciones de operación permiten un lanzamiento con una velocidad mínima de 220 nudos (407,44 km/h.) y una máxima de 580 (1.074,16), variando la altura en función de la bomba empleada, que soporta un rango de temperaturas comprendido entre los -30 y los +60° C. Su confiabilidad es superior al 80 por ciento en el modo de radio frecuencia y superior al 90 con el respaldo de impacto. Esta espoleta posee un selector externo, desde donde se puede configurar el tiempo de armado en segundos, dependiendo si la bomba es lisa o frenada. También en la materia ultrasensible de espoletas la FAA ha trabajado intensamente para obtener y preparar el conocimiento sobre esta espinosa materia.

El próximo paso que la FAA planea dar es la Dardo 2-C, la versión propulsada que integrará un turbomotor íntegramente nacional, alimentado con combustible JP (Jet Propulsion) y cuenta con un sistema de control y navegación que le permite cumplir misiones típicas de un misil de crucero. Se halla en avanzado estado de desarrollo previéndose efectuar los vuelos de prueba en el segundo semestre de este año. La longitud y diámetro exterior son similares a los anteriores, al igual que la velocidad y altura de lanzamiento. Su peso es de 250 kg., mientras que el alcance se extenderá a 200 km.

Al igual que en la versión previa, la designación de blanco puede ser anterior o durante el vuelo, mientras que la navegación es inercial y por GPS, con un perfil en el aire programable que incluye navegación a baja cota con altímetro láser. Los modos de navegación hacia el blanco son de alineación, aproximación y final, incluyendo los predictivos para blancos móviles. Se prevé dotarla con un guiado terminal infrarrojo (IR), que se encuentra en desarrollo.

La carga de guerra es equivalente a la de la bomba Mk.82, aunque, por los datos que han trascendido, parece ser que no llevará el cuerpo de la misma. Estará situada en la parte frontal, extendiéndose hasta la altura de la placa que dispone de los cáncamos y alas. En este caso también se emplea una espoleta de proximidad Doppler FAS 1020, sin la necesidad de utilizar el prolongador. Detrás de este se aloja lo que parece ser el tanque que contiene el propulsante.


“Dardo II” en su pilón de lanzamiento bajo un reactor de combate de la FAA.

Aumento del potencial

En lo que respecta a la fisonomía exterior, se usa un cuerpo plástico similar al de la Dardo 2-B, que difiere tanto en la forma del cono frontal, en la parte inferior, que no copia la curvatura del cuerpo de la bomba, y tendrá una toma de aire que internamente se conecta a la parte frontal del turbomotor. En la sección de cola posee una salida circular para la tobera de esta planta propulsora. En los estudios, se evaluó el empleo de un estatorreactor, un estatocohete y un turborreactor/turbofan.

La dotación de este interesante material permitirá potenciar a los cansados aviones nacionales con un sistema de armamento aéreo de altísima eficiencia, que dotará a la FAA de una buscada capacidad, tal cual es el ataque a gran distancia a blancos rentables y muy protegidos. Las Dardo permiten que viejos reactores, como los que hoy tiene la Fuerza Aérea, operan con grandes posibilidades de éxito a distancia de seguridad y con notable contundencia.

Hasta el momento esta bomba ha sido probada desde el Mirage M-IIICJ matriculado C-717, suspendida del soporte ventral Alkan PM3. Posteriormente los ensayos continuaron en los A-4AR Fightinghawk asignados al Centro de Ensayos de Armamentos y Sistemas Operativos (CEASO). En el caso de estos últimos, la bomba se encontraba suspendida del pilón central Aero-7A de la estación 3. Los Super Etendard 3-A-207 (0757) y 3-A-209 (0759), de la Aviación Naval se trasladaron al Área de Material Río Cuarto para realizar pruebas con ellas, siendo asistidos por el CEASO. También existe evidencia fotográfica y fílmica del 3-A-213 (0763) y del 3-A-214 (0764) portando estas bombas en los soportes externos.

La fuerza naval ha expresado que requiere este tipo de material de última generación y que la dotación del mismo en la institución relanzaría el papel de los Super Etendard en el escenario regional. Hasta ahora se han llevado a cabo alrededor de 30 lanzamientos, esperando que este sistema de armas de diseño y producción nacional ingrese al inventario de la aeronáutica. La necesidad imperiosa de nuevo material lanzable para los aviadores se verá satisfecha con estos ingenios, que permitirán una cierta recuperación del poderío bélico perdido tras años de una casi nula inversión en materia defensiva. De esta manera la FAA demuestra, una vez más, que, aun en medio de estrechez presupuestaria y tiempos políticos adversos, cuenta con personal técnico preparado para los desafíos tecnológicos. 

Autor: Luis Piñeiro (Corresponsal de Grupo Edefa en Argentina)

Fotos: Fuerza Aérea Argentina

www.defensa.com