domingo, 5 de enero de 2025

SGM: El desarrollo problemático del Me 262 Schwalbe

Me 262 Schwalbe: un desarrollo problemático



El Me 262 es uno de los grandes "
qué hubiera pasado si ..." de la Segunda Guerra Mundial. ¿Qué hubiera pasado si Alemania hubiera podido introducir más unidades de este caza a reacción antes en la guerra?

¿Podría esto haber cambiado realmente el resultado de la guerra aérea? ¿El desarrollo de este caza radical se vio realmente obstaculizado por la intervención personal de Hitler? Pocos aviones han generado más mitos y más malentendidos que el Me 262.

Lo que es seguro es que éste fue el primer avión de combate a reacción que entró en servicio operativo en cualquier nación y que era notablemente avanzado en muchos aspectos.

Pero también tenía sus defectos y sus obstáculos: cuando finalmente entró en servicio, la Alemania nazi carecía de los recursos necesarios para construir estos aviones y del tiempo y las instalaciones necesarios para entrenar a los pilotos. Esta es la verdadera historia del Me 262.


Origen

En el período entre guerras, el concepto de lo que se convertiría en el motor turborreactor era bien comprendido y se aceptaba generalmente que un motor de este tipo podría ser capaz de desarrollar considerablemente más empuje que un motor de pistón convencional que impulsara una hélice.

El Me 262 fue revolucionario y fue el primer caza a reacción operativo.

Sin embargo, también se reconoció que habría que superar considerables desafíos técnicos para fabricar un avión fiable.

No fue hasta la década de 1930 cuando se hicieron los primeros intentos de convertir el motor a reacción en una realidad práctica. Casualmente, estos intentos se llevaron a cabo en tres países casi simultáneamente y de forma totalmente independiente.

Aunque el Me 262 fue el primero en volar, Estados Unidos también estaba experimentando con motores a reacción con su P-59.

En Gran Bretaña, el oficial de la RAF Frank Whittle solicitó una patente para un motor alternativo que impulsaba un compresor para producir un avión a reacción a principios de 1930.

En Estados Unidos, Vladimir Pavlecka, jefe de investigación estructural de Douglas Aircraft, comenzó a esbozar diseños para un motor de turbina de gas en 1933.

Sin embargo, el primer motor a reacción operativo se construiría en Alemania, con un diseño creado por un joven estudiante de ingeniería alemán, Hans von Ohain.

En 1934, von Ohain solicitó una patente para un motor turborreactor. A principios de 1936, se incorporó a Heinkel Flugzeugwerke. Poco más de un año después, en marzo de 1937, se puso en funcionamiento en la fábrica de Heinkel el primer motor a reacción del mundo.

Dos años más tarde, en 1939, el Heinkel He 178 surcó los cielos para allanar el camino para los aviones a reacción.

Estaba construido de forma rudimentaria con chapa metálica, pero proporcionaba más de 500 libras de empuje, mucho más de lo que se esperaba. Evidentemente, era posible construir un motor a reacción y, poco después, Junkers también empezó a construir su propio motor a reacción, en secreto y sin consultar con Heinkel.

A mediados de 1939, el Reichsluftfahrtministerium (RLM, el Ministerio del Aire alemán) se dio cuenta de estos acontecimientos.

Para la mayoría de la gente estaba claro que se avecinaba una nueva guerra y que el motor a reacción podría ofrecer la posibilidad de un mayor rendimiento que el que podía proporcionar cualquier motor de pistón.

El Me 262 tenía varias opciones de motor para sacar el máximo partido a la estructura. El BMW 003 era uno de ellos.

Para evitar la duplicación de esfuerzos, se ordenó a Heinkel que dejara de trabajar en motores a reacción y se encargó formalmente a dos empresas de motores aeronáuticos, Junkers Motoren (Jumo) y BMW, que llevaran a cabo investigaciones sobre el desarrollo de motores a reacción. Esto conduciría a la creación de dos nuevos motores turborreactores, el BMW 003 y el Jumo 004.

Se encargó a dos fabricantes de aviones, Heinkel y Messerschmitt AG, que iniciaran el trabajo de diseño de una estructura completamente nueva para un avión militar propulsado por un par de estos motores y capaz de alcanzar una velocidad máxima de no menos de 850 km/h (el caza de primera línea más avanzado de la Luftwaffe en ese momento, el Bf 109E, tenía una velocidad máxima de alrededor de 560 km/h).

Se trataba sin duda de una especificación sorprendentemente avanzada, y el hecho de que se planteara antes de que hubiera comenzado la Segunda Guerra Mundial ha llevado a especular que Alemania podría haber tenido un avión de combate a reacción operativo mucho antes de lo que lo tuvo.

Pero lo cierto es que la tecnología detrás de los motores a reacción era todavía inmadura y fue esto lo que llevó al prolongado desarrollo del nuevo avión.

El Jumo 004 fue el motor que terminó siendo seleccionado para propulsar el Me 262.

Proyecto 1065

La respuesta de Messerschmitt a la especificación RLM fue el Projekt 1065, un diseño de ala recta con un par de motores BMW 003 enterrados en las raíces de las alas. El avión estaba provisto de dos ruedas principales y una única rueda de cola pequeña, todas ellas retráctiles.

Sin embargo, aunque el diseño de la estructura del avión estaba prácticamente terminado en junio de 1939, el desarrollo del motor estaba muy retrasado.

Tanto el motor BMW 003 como el Jumo 004 tenían problemas con la falta de una aleación lo suficientemente ligera para construir las partes internas del motor pero que fuera capaz de resistir las altísimas temperaturas a las que se enfrentaban.

Como resultado, el desarrollo fue lento y rápidamente se hizo evidente que el motor BMW en particular sería considerablemente más pesado de lo previsto.

La cabina era básica y la visibilidad no es muy buena.

En parte debido a esto, y en parte porque los ingenieros de Messerschmitt se dieron cuenta de que los motores incrustados en las raíces de las alas serían de difícil acceso para mantenimiento, eso llevó a un cambio de diseño significativo.

Los motores se trasladaron a una posición exterior, a unos módulos suspendidos debajo de las alas, lo que mejoró el acceso, pero también afectó al centro de gravedad del avión.

En lugar de considerar un diseño completamente nuevo, se decidió inclinar las alas hacia atrás en un ángulo de 18,5°. Esto le dio al Me 262 su aspecto distintivo y dio lugar al nombre que se le dio posteriormente: Schwalbe (Golondrina).

Sin embargo, un año después de que se completara el diseño inicial del fuselaje, todavía no había motores a reacción disponibles ni de BMW ni de Jumo.

Estos dibujos muestran el diseño del ala en flecha. Crédito de la foto: Voytek S CC BY-SA 3.0.

Para poder realizar al menos algunas pruebas de vuelo básicas, se decidió equipar el nuevo avión con un motor de pistón convencional. El primer vuelo del avión, denominado Me 262V1, no estaría propulsado por motores a reacción, sino por un único motor de pistón de 750 CV que impulsaría una hélice de madera de dos palas montada en el morro.

Pruebas de vuelo del Me 262

El primer vuelo del Me 262V1 tuvo lugar en abril de 1941 y el avión alcanzó una velocidad de tan solo 417 km/h. Los primeros motores BMW 003 no llegaron a la planta de Messerschmitt hasta noviembre de 1941 y no estuvieron listos para la primera prueba de vuelo hasta marzo de 1942.

Durante el primer vuelo, el avión logró despegar, pero ambos motores a reacción se apagaron y el piloto se vio obligado a realizar un aterrizaje de emergencia utilizando únicamente la potencia del Jumo 201 que afortunadamente todavía estaba instalado en el morro.

Estaba claro que era necesario seguir desarrollando el motor BMW, pero el nuevo 003A no estaría disponible hasta octubre de 1943.

Las primeras variantes eran aviones con tren de aterrizaje de cola.

Como medida provisional, el Me 262 fue diseñado para utilizar el motor Jumo 004. Sin embargo, el desarrollo de este motor se vio obstaculizado por las instrucciones de que debía utilizar la menor cantidad posible de “ material bélico esencial”.

Esto incluía aleaciones escasas que eran necesarias para la producción de aviones convencionales y otras armas.

Esto era comprensible: nadie sabía realmente si los aviones a reacción serían viables, y tenía sentido concentrar trabajadores calificados y recursos en tecnología conocida, pero como resultado, el Jumo 004 tendría fallas inherentes y nunca sería completamente confiable.

El tercer prototipo, Me 262, equipado con dos motores Jumo 004A, pero sin el motor de pistón Jumo en el morro, voló por primera vez en julio de 1942.

El quinto prototipo fue el primero en utilizar el tren de aterrizaje triciclo visto en todos los modelos posteriores; los pilotos se habían quejado de la poca visibilidad durante el rodaje, pero la larga y frágil pata del tren de aterrizaje delantero demostraría ser un problema permanente para este avión.

Con el quinto prototipo, el Me 262 ya había tomado forma.

En noviembre de 1943, el sexto prototipo podía alcanzar velocidades de 725 km/h y se presentó ante Adolf Hitler. Éste quedó muy impresionado con el nuevo caza, pero insistió en que también se lo desarrollara como bombardero de alta velocidad.

La intervención inesperada de Hitler se cita a menudo como la principal razón del retraso en la puesta en servicio del Me 262, pero eso simplemente no es cierto.

Messerschmitt AG ya estaba trabajando con un calendario ajustado y ciertamente les tomó por sorpresa este nuevo requisito, pero no hay evidencia de que el trabajo en la versión cazabombardero, que se conocería como Sturmvogel (pájaro de tormenta), causara largos retrasos en la introducción del caza.

Sin embargo, la insistencia posterior de Hitler en que una proporción de Me 262 se produjera como Stormvogel limitó el número total de versiones de caza disponibles.

Hay muchas variantes propuestas del Me 262.

Otros factores provocaron retrasos mucho más importantes en el programa Me 262. El 17 de agosto de 1943, la planta de Messerschmitt AG en Ratisbona sufrió graves daños durante un bombardeo de los B-17 de la USAAF.

Esto destruyó algunos de los prototipos del Me 262 en construcción y, lo que es más grave, algunas de las plantillas y herramientas utilizadas para la producción de fuselajes. Sin embargo, los retrasos más graves se debieron a los continuos problemas con los motores del Me 262.

A mediados de 1943, el motor Jumo 004A se estaba volviendo más confiable y completó con éxito varias pruebas de 100 horas.

Sin embargo, para su construcción se seguían utilizando níquel y molibdeno, dos materiales que escaseaban considerablemente, por lo que se diseñó una nueva versión, la Jumo 004B, que utilizaba piezas de acero dulce recubiertas de aluminio para evitar la oxidación.

Si bien los motores no eran muy fáciles de usar, su rendimiento en comparación con los aviones de pistón era excelente. Crédito de la foto: Noop1958 GPLv3.

Sin embargo, esta nueva versión del motor tardó tiempo en desarrollarse y se descubrió que tenía una vida útil de solo 10 a 25 horas.

Debido a este rediseño, el motor Jumo 004B no entró en producción hasta junio de 1944 y no fue hasta agosto de 1944 cuando se entregó el primer lote de 90 Me 262 a la Luftwaffe. Para entonces, ya era demasiado tarde para que este avión radical tuviera un impacto significativo en el curso de la guerra.

En servicio

En abril de 1944 se creó una unidad de entrenamiento, Erprobungskommando 262 , para realizar pruebas de combate de un puñado de Me 262 de preproducción, pero no fue hasta septiembre que un número sustancial de estos aviones comenzaron a llegar a las unidades de primera línea de la Luftwaffe.

Se utilizaron dos versiones principales: el interceptor Me 262 A-1a Schwalbe armado con cuatro cañones MK 108 de 30 mm en el morro y el Me 262 A-2a Sturmvogel armado con dos cañones MK 108 y capaz de transportar dos bombas de 250 kg o una de 500 kg.

Esta filmación de la cámara del P-51 muestra un Me 262 sin piloto ni cabina.

También hubo un caza nocturno experimental, un bombardero biplaza y versiones de reconocimiento, pero ninguno se produjo en grandes cantidades.

El Me 262 era ciertamente rápido, más de 100 mph más rápido que el caza monomotor aliado más rápido de la época, el P-51 Mustang, pero todas las versiones requerían un manejo muy cuidadoso.

El empuje era pobre a bajas velocidades, lo que hacía que este avión fuera muy vulnerable durante el despegue y el aterrizaje: se necesitaban patrullas permanentes de cazas Fw 190 para proporcionar cobertura superior para proteger los aeródromos de aviones a reacción.

El Jumo 004B era propenso a que el compresor se detuviera y se apagara si el acelerador se abría o cerraba demasiado rápido y requería una revisión importante después de solo diez horas de funcionamiento.

Aún así, los motores a reacción no eran confiables y se creía que muchos Me 262 se perdieron debido a fallas en los motores, en parte atribuibles al entrenamiento insuficiente de pilotos inexpertos.


Una réplica del Me 262 B-1a. Crédito de la foto: Tascam3438 CC BY-SA 3.0.

En combate, el motor Jumo también dejaba un distintivo rastro de humo negro que hacía que el Me 262 fuera fácil de detectar y atacar.

En total se fabricaron alrededor de 1.400 Me 262, pero solo unos 300 se utilizaron en combate y, en general, no más de 30 o 40 de estos aviones estuvieron operativos al mismo tiempo.

A-1a/U4 tanques de guerra

Una versión única del Messerschmitt Me-262, conocida como A-1a/U4 Pulkzerstörer, fue diseñada específicamente para llevar un potente cañón Mauser Mk 214 de 50 mm.

Esta variante fue pensada para destacar en el derribo de bombarderos enemigos, gracias a la precisión del cañón y a la capacidad del piloto de atacar objetivos más allá del alcance de los artilleros defensivos de los bombarderos estadounidenses.

Se convirtieron dos fuselajes Me-262 a esta configuración, uno de ellos con el número de serie 170083 (designado como prototipo V083).

Sin embargo, antes de que pudiera ser evaluado por los Whizzers de Watson (54th Air Disarmament Squadron) en los Estados Unidos, este avión se estrelló trágicamente. No obstante, ganó fama al lucir marcas estadounidenses y al aparecer en una serie de fotografías con el diseño en el morro de Willie Jeanne.

Otra variante interesante, el prototipo V056, fue diseñado como un caza nocturno a reacción equipado con un radar FuG218. Curiosamente, este avión fue probado en vuelo por el teniente Kurt Welter en noviembre de 1944 y se le atribuye el derribo de 2 bombarderos Lancaster y 3 aviones Mosquito.


 Arte de nariz de Willie Jeanne

El Me 262 fue un avión revolucionario, pero nunca fue un arma capaz de ganar una guerra. Los frágiles motores Jumo fueron una limitación que nunca se superó y el desarrollo prolongado de esta tecnología inmadura significó que el Me 262 nunca estuvo disponible en grandes cantidades.

El Schwalbe era un bombardero interceptor impresionante, pero ciertamente no era invulnerable en combate aéreo. La versión Sturmvogel era lo suficientemente rápida como para evitar la mayoría del fuego terrestre.

Solo podía transportar una pequeña carga de bombas y era demasiado rápido para bombardear o ametrallar con precisión: no era raro que las bombas lanzadas por los Sturmvogels cayeran a una milla o más de sus objetivos.


La tecnología era demasiado inmadura y no se fabricó en cantidades suficientes como para tener un efecto en la guerra. Crédito de la foto: Paul Maritz CC BY-SA 3.0.

Algunas personas han sugerido que si hubiera estado disponible en mayores cantidades y antes, el Me 262 podría haber cambiado el curso de la Segunda Guerra Mundial.

El general de la Luftwaffe, Adolf Galland, por ejemplo, afirmó después de la guerra que, si el Me 262 hubiera estado disponible un año antes y en cantidades sustanciales, podría haber sido posible usarlo para poner fin a la campaña de bombardeos diurnos estadounidenses contra Alemania.

La evidencia sugiere que esto simplemente no es verdad. La Alemania nazi tenía recursos e instalaciones de producción limitados. Centrarse en el desarrollo más rápido del Me 262 y sus motores a reacción habría significado producir menos aviones con motor de pistón que Alemania necesitaba tan desesperadamente para mantener el esfuerzo bélico.

Un Boeing B-17G habría sido el tipo de objetivo contra el que habrían volado los Me 262. Crédito de la foto: Airwolfhound CC BY-SA 2.0.

Incluso si un gran número del Me 262 hubiera estado disponible antes, la evidencia sugiere que esto no habría hecho una gran diferencia.

Por ejemplo, en abril de 1945, una de las mayores fuerzas de Me 262 jamás reunidas atacó una formación estadounidense sobre el norte de Alemania. Casi 60 Me 262 del JG 7 atacaron a las escoltas de cazas que protegían una enorme formación de bombarderos de la USAAF.

Los aviones alemanes lograron derribar 18 aviones, pero perdieron 27 Me 262, ¡casi la mitad de toda la fuerza atacante! El Me 262 se ganó su lugar en la historia como el primer caza a reacción operativo, pero nunca fue el arma maravillosa que a veces se afirma.

Variante del cazabombardero

El “Sturmvogel” (petrel) era el nombre que se le daba a la variante cazabombardero del Me 262, que era una adaptación de su función original de interceptor. La producción del primer modelo Me 262A-2a comenzó en julio de 1944.

Me-262A-2a/U2, del cual se construyeron dos prototipos con morro acristalado para acomodar a un bombardero.

Este modelo se diferenciaba del Me 262A-1a principalmente por la incorporación de soportes para un par de bombas de 250 kg o una única bomba de 500 kg. Las misiones de bombardeo se llevaban a cabo en picado de 30 grados a velocidades de entre 850 y 900 km/h, lanzando la bomba a una altitud de unos 1000 metros.

Dos aviones en concreto, identificados como n.º 130 170 y n.º 138 188, estaban equipados con una mira de bombardeo a baja altitud TSA en el morro, lo que dio lugar a su clasificación como Me 262A-2a/Ul. Estos aviones fueron probados en Rechlin. Su armamento se limitaba a dos cañones de 30 mm.

A pesar de que la instalación externa de la mira aumentaba la resistencia, la velocidad del Me 262A-2a le permitía evadir a los cazas enemigos, y su velocidad de picado le permitía operar en condiciones de completo dominio aéreo aliado.

Su precisión de bombardeo era comparable a la del Fw 190, aunque el Me 262A-2a enfrentaba desafíos para localizar objetivos más pequeños.

Normalmente, la aeronave se aproximaba al objetivo en vuelo nivelado hasta que quedaba oculto por la góndola del motor izquierdo o derecho, y luego comenzaba un picado.


Avión Messerschmitt Me 262 alemán capturado. La foto es notable porque se trata de una variante del Me 262 A-2a/U2 con morro acristalado para bombarderos; solo se construyeron dos prototipos. Weimar, Alemania, mayo de 1945.

Era crucial que el tanque principal trasero estuviera vacío en esta etapa; de lo contrario, el avión se inclinaría hacia arriba después del lanzamiento de la bomba. Para mejorar la precisión del bombardeo, el Me 262 No. 110 484 estaba equipado con una mira giroscópica Lotfe-7N.

Este avión fue designado como Me 262A-2a/U2. La instalación de esta mira requirió un segundo miembro de la tripulación. En consecuencia, se retiraron todas las armas ligeras y se modificó el avión con un nuevo morro de madera que contenía la mira y un asiento para el bombardero. La carga de bombas siguió siendo idéntica a la del Me 262A-2a.

El Me262 V10 W Nr 130005 remolca una bomba de 1000 kg. Estas pruebas se pospusieron cuando se descubrió que la bomba tenía tendencia a "deslizarse" y se volvió tan mala durante un vuelo que el piloto de pruebas, Gerd Lindner, se vio obligado a saltar en paracaídas. El programa obtuvo un nuevo avión, pero los problemas nunca se resolvieron por completo.


Especificaciones

  • Tripulación:  1
  • Longitud:  10,6 m (34 pies 9 pulgadas)
  • Envergadura:  12,6 m (41 pies 4 pulgadas)
  • Altura:  3,5 m (11 pies 6 pulgadas)
  • Peso vacío:  3.795 kg (8.367 lb)
  • Peso máximo de despegue:  7.130 kg (15.719 lb)
  • Planta motriz:  2 × motores turborreactores de flujo axial Junkers Jumo 004B-1, 8,8 kN (1980 lbf) de empuje cada uno
  • Velocidad máxima:  900 km/h (560 mph, 490 kn)
  • Alcance:  1.050 km (650 millas, 570 millas náuticas)
  • Techo de servicio:  11.450 m (37.570 pies)
  • Velocidad de ascenso:  20 m/s (3900 pies/min) con un peso máximo de 7130 kg (15 720 lb)

 


sábado, 4 de enero de 2025

Bombardero pesado: Kawasaki Ki-91

Bombardero pesado Kawasaki Ki-91





El Kawasaki Ki-91 fue un bombardero pesado japonés desarrollado por Kawasaki Aircraft Industries durante los últimos años de la Segunda Guerra Mundial. Fue un bombardero pesado de la misma categoría que el Nakajima G8N desarrollado para la Armada Imperial Japonesa.
El Ki-91 se presentó como un bombardero de cuatro motores, propulsado por motores Mitsubishi Ha-214 de 2500 CV cada uno y equipado con una cabina presurizada. Con una anchura de 48 metros y una longitud de 33 metros, el Ki-91 era un avión más grande que el Boeing B-29. Aunque tenía un alcance proyectado más largo que el B-29, solo era 4 toneladas más pesado que el avión estadounidense. Sus armas defensivas eran inusualmente pesadas para los bombarderos japoneses porque tuvieron que transportar un total de 12 cañones de 20 mm.
A finales de 1944, se estaba construyendo un prototipo. Sin embargo, el desarrollo fue brutalmente interrumpido cuando las redadas del B-29 en la planta de Kawasaki destruyeron la herramienta en febrero de 1945.
La situación en Japón es ahora desesperada, el proyecto fue abandonado.



Desarrollo

A principios de 1943, tras la cancelación del Nakajima Ki-68 y el Kawanishi Ki-85 debido al fallo del Nakajima G5N, Kawasaki respondió a la exigencia del Ejército Imperial Japonés de un bombardero de largo alcance de tamaño y rendimiento similares al B-29 Superfortress con el Ki-91. Al igual que el G5N, el Ki-68 y el Ki-85, el Ki-91 debía ser capaz de lanzar ataques al territorio continental de Estados Unidos desde Japón. En abril de 1944, se construyó una maqueta de madera para su inspección y en mayo se ordenó la producción del primer prototipo. La construcción del prototipo comenzó en junio, pero los primeros ataques del B-29 en Japón estaban en marcha a partir de ese mes. En febrero de 1945, el primer prototipo del Ki-91 estaba completo en un 60 por ciento cuando un ataque aéreo del B-29 dañó las instalaciones de la prefectura de Gifu donde se estaba construyendo el prototipo del Ki-91, lo que detuvo el programa.

Diseño

El Ki-91 fue un diseño de bombardero pesado similar en tamaño y carga de bombas al B-29 Superfortress y al Consolidated B-32. Tenía una envergadura y un fuselaje mayores que el B-29 y el B-32, y contaba con una cabina presurizada para permitir vuelos a gran altitud. El prototipo no iba a tener cabina presurizada, pero los aviones de producción se construirían con ella.


Presupuesto

Datos de [ 1 ]

Características generales

  • Tripulación: 8
  • Longitud: 32,97 m (108 pies 2 pulgadas)
  • Envergadura: 47,9 m (157 pies 2 pulgadas)
  • Altura: 9,99 m (32 pies 9 pulgadas)
  • Área del ala: 223,99 m2 ( 2.411,0 pies cuadrados)
  • Peso vacío: 33.999 kg (74.955 lb)
  • Peso bruto: 57.999 kg (127.866 lb)
  • Planta motriz: 4 × motores de pistón radial Mitsubishi Ha-214 Ru de 18 cilindros refrigerados por aire, 1.900 kW (2.500 hp) cada uno
  • Hélices: hélice de velocidad constante de 4 palas


Rendimiento

  • Velocidad máxima: 580 km/h (360 mph, 310 kn) a 9.808 m (32.178 pies)
  • Alcance: 9.000 a 10.000 km (5.600 a 6.200 millas, 4.900 a 5.400 millas náuticas)
  • Techo de servicio: 13.500 m (44.300 pies)
  • Tiempo hasta la altitud: 8.000 m (26.000 pies) en 20 minutos y 30 segundos

Armamento

  • Armas:
12 ametralladoras de 20 mm (0,787 pulgadas) (8 en una configuración de montaje de cañón doble y 4 en una configuración de montaje de cañón cuádruple)
  • Bombas: hasta 4.000 kg (8.800 lb) de bombas



viernes, 3 de enero de 2025

Evolución de la familia de misiles X-59 rusoviéticos

Evolución de la familia de misiles X-59





Misiles X-59 (en primer plano) y X-59M (al fondo). Foto: MilitaryRussia.ru

A principios de los años ochenta, la aviación de combate soviética recibió el último misil guiado aire-superficie, el Kh-59. Esta munición tenía un alto rendimiento y amplias capacidades de combate, lo que llevó a su rápido desarrollo. Como resultado, surgieron varias modificaciones del misil original con diversas características y ventajas sobre el modelo básico.

Modelo básico

El futuro misil Kh-59 fue desarrollado en la primera mitad de los años setenta como parte del trabajo experimental de diseño denominado "Ovod". El desarrollador principal del proyecto fue el MKB "Raduga" de la ciudad de Dubna, actualmente parte de la Corporación "Armas de Misiles Tácticos" (KTRV).

El propósito del proyecto de I+D Ovod era crear un nuevo sistema de misiles para bombarderos tácticos existentes y futuros. Su objetivo era permitir a la aviación atacar una amplia gama de objetivos terrestres a distancias de al menos 35-40 km. Según algunas fuentes, también se desarrollaba una modificación especial del sistema y del misil para ser utilizado por bombarderos estratégicos.

El desarrollo del Ovod y el Kh-59 se completó a mediados de los años setenta. Las pruebas de diseño de vuelo comenzaron en 1975 y las pruebas estatales concluyeron en 1979. El misil Kh-59, con portadores como los aviones Su-17M y Su-24M, confirmó las características calculadas y se recomendó para su adopción en servicio.

En 1980, el complejo Ovod fue adoptado para su uso en el bombardero Su-24M. En 1982, se integró oficialmente al Su-17M4. Sin embargo, el Su-24M, más moderno y con ventajas importantes, fue considerado el principal portador.


Su-17M4 como portador del misil Kh-59. El contenedor APK-9 está suspendido bajo el fuselaje, y el misil bajo el ala derecha. Foto: MilitaryRussia.ru

Posteriormente, los misiles Kh-59 y el complejo Ovod fueron utilizados en varios ejercicios y demostraron su alto potencial. Existe información sobre su uso en operaciones de combate en Afganistán y Chechenia. Bajo condiciones climáticas favorables que no interferían con los sistemas de guía, los productos alcanzaban los objetivos previstos con precisión.

Parte técnica

El complejo Ovod incluía varios dispositivos principales, siendo el más importante el misil guiado Kh-59, responsable de la destrucción directa del objetivo. También se desarrolló un contenedor suspendido APK-9 con dispositivos de control y comunicación. Los sistemas de navegación y puntería del avión portador se utilizaban para detectar objetivos y controlar el misil.


Misil antibuque Kh-59MK con buscador de radar. Foto Wikimedia Commons

El primer modelo del Kh-59 presentaba un cuerpo cilíndrico con un cono transparente hemisférico en la nariz. Tanto en la parte delantera como trasera había conjuntos de alas en forma de cruz. Las alas traseras estaban equipadas con timones para control en vuelo. El misil tenía una longitud total de 5,4 m, un diámetro de 380 mm y una envergadura de 1,26 m. Su peso de lanzamiento era de 760 kg.

Estaba equipado con un motor de combustible sólido de dos etapas con modos de arranque y crucero. La velocidad máxima alcanzaba los 1000 km/h, y su alcance máximo, dependiendo de la altitud y velocidad del lanzamiento, era de 40-45 km.

Sistema de guía TV del misil Kh-59M. Foto: Wikimedia Commons

El Kh-59 utilizaba un sistema de guía combinado. El vuelo al área objetivo se realizaba mediante el sistema de control inercial SNAU-59. Luego se activaba el sistema de comando televisivo Tekon-1. El misil estaba equipado con el sistema Tubus-2, que podía rastrear el objetivo y transmitir una señal de video al avión portador. El operador podía controlar el vuelo o activar la guía automática. Las pruebas mostraron un error circular probable de no más de 1-2 m.

El misil portaba una ojiva explosiva-cumulativa de 148 kg, capaz de destruir estructuras terrestres fortificadas o grandes objetivos superficiales.



Producto X-59MK2. Foto Vitalykuzmin.su

Modernizaciones

Ya en los años ochenta comenzaron los trabajos para mejorar el complejo Ovod y el misil Kh-59. Esto resultó en nuevas versiones, como el Kh-59L, que proponía un sistema de guía láser, aunque no progresó más allá de la fase de pruebas. Posteriormente, el Buró de Diseño Raduga introdujo una modernización profunda que incluyó un motor turborreactor, dando lugar al Kh-59M, adoptado en 1988.

Misiles posteriores

En los años noventa se desarrolló una versión antibuque (Kh-59MK) con un alcance extendido de hasta 285 km, gracias al motor TRDD-50B y un radar ARGS-59. Más tarde, en 2009, se presentó el Kh-59MK2, con un fuselaje cuadrado y mejoras significativas en los sistemas de guía, alcanzando un alcance declarado de 290 km.




La familia Kh-59 ha evolucionado significativamente durante más de 40 años, con múltiples modernizaciones y adaptaciones que la han convertido en una pieza clave del arsenal de la aviación táctica rusa. Se espera que esta línea continúe siendo desarrollada y mejorada en el futuro.


jueves, 2 de enero de 2025

SAM: Sistemas de misiles antiaéreos británicos (1/2)

Sistemas de misiles antiaéreos británicos

Parte 1 || Parte 2
Revista Militar (original en ruso)




El trabajo en los primeros misiles antiaéreos británicos comenzó durante la Segunda Guerra Mundial. Como calcularon los economistas británicos, el costo de los proyectiles de artillería antiaéreos consumidos fue casi igual al costo de un bombardero caído. Al mismo tiempo, era muy tentador crear un interceptor piloto remoto de una sola vez que garantizara la destrucción del reconocimiento o bombardero a gran altitud enemigo.

El primer trabajo en esta dirección comenzó en 1943. El proyecto, llamado Braikemina (English Brakemine), preveía la creación del misil antiaéreo guiado más simple y económico.

Como sistema de propulsión, se utilizó un grupo de ocho motores de combustible sólido de misiles antiaéreos no guiados de 76 mm. Se suponía que el lanzamiento se realizaría desde la plataforma de los cañones antiaéreos de 94 mm. Misiles de guía transportados en el haz del radar. La altura estimada de la lesión debía alcanzar los 10.000 m.

A finales de 1944, comenzaron los lanzamientos de prueba, sin embargo, debido a numerosos fallos de funcionamiento, el trabajo de desarrollo de misiles se retrasó. Después de que terminó la guerra, debido a la pérdida de interés de los militares en este tema, se detuvieron los fondos para el trabajo.

En 1944, la compañía Fairey comenzó a trabajar en la creación de un misil antiaéreo de combustible sólido controlado por radio "Stud" (inglés Stooge - simulador). Como aceleradores de lanzamiento, se utilizaron varios motores de misiles antiaéreos de 76 mm. Cuatro motores de cohetes no guiados Swallow de 5 pulgadas sirvieron como motores de marcha.


SAM "Stud"

La financiación del trabajo fue realizada por el departamento naval, que necesitaba un medio eficaz para proteger a los buques de guerra de los ataques de los kamikazes japoneses.

En las pruebas que comenzaron en 1945, el cohete alcanzó una velocidad de 840 km / h. Se fabricaron y probaron 12 misiles. Sin embargo, en 1947, todo el trabajo sobre este tema se detuvo debido a una clara falta de perspectivas.

Sobre los misiles antiaéreos en el reino de la isla recordados después del advenimiento de las armas nucleares en la URSS. Los bombarderos soviéticos Tu-4 de largo alcance, que actúan desde aeródromos en la parte europea del país, podrían alcanzar cualquier objeto en el Reino Unido. Y aunque los aviones soviéticos tendrían que volar sobre el territorio de Europa occidental, saturados de defensa aérea estadounidense, sin embargo, tal escenario no podría ser completamente excluido.

A principios de los años 50, el gobierno británico asignó fondos significativos para modernizar los existentes y desarrollar nuevos sistemas de defensa aérea. De acuerdo con estos planes, se anunció una competencia para la creación de un sistema de defensa aérea de largo alcance que podría combatir a los prometedores bombarderos soviéticos.

A la competencia asistieron English Electric y Bristol. Los proyectos presentados por ambas empresas, en términos de sus características, fueron en gran medida similares. Como resultado, el liderazgo británico en caso de falla de una de las opciones decidió desarrollar ambas.

Los cohetes creados por English Electric - Thunderbird ("Petrel" en inglés) y Bristol - "Bloodhound" ("Hound" en inglés) fueron incluso muy similares en apariencia. Ambos misiles tenían un cuerpo cilíndrico estrecho con un radomo cónico y una unidad de cola desarrollada. Se instalaron cuatro propulsores sólidos de lanzamiento en las superficies laterales de los misiles. Para la orientación de misiles de ambos tipos, se suponía que debía usar el radar radar "Ferranti" tipo 83.

Inicialmente, se suponía que el lanzador de misiles Thunderbird usaría un motor de propulsión líquida de dos componentes. Sin embargo, los militares insistieron en usar un motor de combustible sólido. Esto retrasó un poco la adopción del complejo antiaéreo y limitó sus capacidades en el futuro.


SAM Thunderbird


Al mismo tiempo, los cohetes de combustible sólido eran mucho más simples, seguros y económicos de mantener. No requerían una infraestructura engorrosa para repostar, entregar y almacenar combustible líquido.

Las pruebas del cohete Thunderbird, que comenzó a mediados de los años 50, a diferencia de su competidor, el misil Bloodhound, se desarrollaron sin problemas. Como resultado, el Thunderbird estaba listo para ser adoptado mucho antes. En este sentido, las fuerzas terrestres decidieron abandonar el apoyo al proyecto de Bristol, y el futuro del misil antiaéreo Bloodhound estaba en duda. El sabueso fue salvado por la Royal Air Force. Los representantes de la Fuerza Aérea, a pesar de la falta de conocimiento y numerosos problemas técnicos, percibieron un gran potencial en un cohete con motores de propulsión líquida ramjet.

El Thunderbird entró en servicio en 1958, por delante del Bloodhound. Este complejo reemplazó los cañones antiaéreos de 94 mm en los regimientos de defensa antiaérea pesados ​​36 y 37 de las fuerzas terrestres. Cada regimiento tenía tres baterías antiaéreas del sistema de defensa aérea Thunderbird. La batería incluía: designación y orientación del objetivo del radar, puesto de control, generadores diesel y 4-8 lanzadores.

Para su época, el lanzador de misiles de combustible sólido Thunderbird tenía buenas características. Un misil con una longitud de 6350 mm y un diámetro de 527 mm en la variante Mk 1 tenía un alcance de puntería de 40 km y un alcance de 20 km. El primer sistema de misiles de defensa aérea S-75 de masa soviética tenía características similares de alcance y altitud, pero utilizaba un cohete cuyo motor principal funcionaba con combustible líquido y un oxidante.

A diferencia de los misiles antiaéreos soviéticos y estadounidenses de primera generación, que usaban un sistema de guía de comando por radio, los británicos desde el principio planearon un cabezal de referencia semi-activo para los sistemas de defensa aérea Thunderbird y Bloodhound. El radar de iluminación del objetivo se utilizó para capturar, rastrear y guiar misiles al objetivo, iluminó el objetivo para el GOS de un misil antiaéreo, que apuntaba a la señal reflejada desde el objetivo. Este método de guía tenía mayor precisión en comparación con el comando de radio y no dependía tanto de la habilidad del operador de guía. De hecho, para la derrota fue suficiente para mantener el rayo del radar en el blanco. En la URSS, los sistemas de defensa aérea con dicho sistema de guía S-200 y "Square" aparecieron solo en la segunda mitad de los años 60.

Las baterías antiaéreas formadas inicialmente sirvieron como guardia para importantes instalaciones industriales y militares en las Islas Británicas. Después de adaptarse a una condición de trabajo y adoptar el sistema de defensa aérea Bloodhound, que se encargó de defender el Reino Unido, todos los regimientos de misiles antiaéreos de las fuerzas terrestres con el sistema de defensa aérea Thunderbird fueron transferidos al Ejército del Rin en el FRG. 



En las décadas de 1950 y 1960, los aviones a reacción de combate se desarrollaron a un ritmo muy rápido. En este sentido, en 1965, el sistema de defensa aérea Thunderbird se modernizó para mejorar el rendimiento de combate. El radar de seguimiento y guía de pulso fue reemplazado por una estación más potente y resistente al ruido que opera en el modo de radiación continua. Debido al aumento en el nivel de la señal reflejada desde el objetivo, fue posible disparar a objetivos que vuelan a una altura de hasta 50 metros. El cohete en sí también fue mejorado. La introducción de un nuevo motor de marcha más potente y potenciadores de arranque en la variante Thunderbird Mk. II permitió aumentar el alcance de tiro hasta 60 km.

Pero las capacidades del complejo para combatir objetivos de maniobra activa eran limitadas, y representaba un peligro real solo para los bombarderos voluminosos de largo alcance. A pesar del uso de misiles propulsores sólidos altamente avanzados con buscador semiactivo como parte de este sistema de defensa aérea británico, no se usó ampliamente fuera del Reino Unido.


En 1967, Arabia Saudita compró varias modificaciones de Thunderbird Mk eliminadas del servicio en el Reino Unido. I. El interés en este complejo mostró Libia, Zambia y Finlandia. Los finlandeses fueron enviados a probar varios SAM con PU, pero más allá de esto, el asunto no avanzó.

En los años 70, el Thunderbird comenzó a eliminarse gradualmente a medida que llegaban nuevos sistemas de baja altitud. El comando del ejército llegó a la conclusión de que la principal amenaza para las unidades terrestres no eran los bombarderos pesados, sino helicópteros y aviones de ataque que este complejo bastante voluminoso y de baja movilidad no podía combatir de manera efectiva. Los últimos sistemas de defensa aérea Thunderbird fueron retirados del servicio en las unidades de defensa aérea del ejército británico en 1977.

El destino del competidor, el sistema de defensa aérea Bloodhound de Bristol, a pesar de las dificultades iniciales con el desarrollo del complejo, fue más exitoso.

En comparación con el Thunderbird, el misil Bloodhound era más grande. Su longitud era 7700 mm y un diámetro de 546 mm, el peso del cohete superó los 2050 kg. El alcance de lanzamiento de la primera opción fue un poco más de 35 km, que es comparable al alcance de tiro del sistema de defensa de combustible sólido estadounidense MIM-23B HAWK, mucho más compacto y de baja altitud.


SAM "Bloodhound"


El SAM "Bloodhound" tenía un diseño muy inusual, ya que un sistema de propulsión marchaba utilizaba dos motores Ramjet "Tor", que funcionaban con combustible líquido. Se montaron motores en marcha en paralelo en las partes superior e inferior del casco. Para acelerar el cohete a la velocidad a la que podían operar los ramjets, se utilizaron cuatro propulsores de combustible sólido. Los aceleradores y parte del plumaje se reiniciaron después de que el cohete se aceleró y los motores de marcha comenzaron a funcionar. Los motores de marcha de flujo directo dispersaron el cohete en la sección activa a una velocidad de 2.2 M.

Aunque el mismo método y radar de iluminación que el utilizado en el sistema de defensa aérea Thunderbird se utilizó para apuntar a los misiles Bloodhound, el equipo terrestre del Hound era mucho más complicado que el equipo terrestre del Burevestnik.

Para determinar la trayectoria óptima y el momento del lanzamiento del misil antiaéreo como parte del complejo Bloodhound, se utilizó una de las primeras computadoras de producción británicas, Ferranti Argus. Diferencia con el sistema de defensa aérea Thunderbird: en la batería antiaérea Bloodhound, se proporcionaron dos radares de objetivos, que permitieron lanzar todos los misiles en una posición de disparo a dos objetivos aéreos enemigos con un intervalo corto.

Como ya se mencionó, el desarrollo de los misiles Bloodhound fue muy difícil. Esto se debió principalmente al funcionamiento inestable y poco confiable de los motores ramjet. Los resultados satisfactorios de la operación de los motores de marcha se lograron solo después de aproximadamente 500 pruebas de fuego de los motores Thor y lanzamientos de pruebas de misiles, que se llevaron a cabo en el sitio de prueba australiano de Woomera.



A pesar de algunas deficiencias, los representantes de la Fuerza Aérea acogieron favorablemente el complejo. Desde 1959, el sistema de misiles de defensa aérea Bloodhound ha estado en servicio de combate, cubriendo bases aéreas en las que se desplegaron bombarderos Vulcan de largo alcance británicos.

A pesar del mayor costo y complejidad, las ventajas del Bloodhound fueron un excelente rendimiento de fuego. Lo que se logró por la presencia en la batería de fuego de dos guías de radar y una gran cantidad de misiles antiaéreos listos para el combate en posición. Alrededor de cada radar de iluminación había ocho lanzadores con misiles, mientras que los misiles se controlaban y guiaban desde un solo puesto centralizado.

Otra ventaja significativa de los misiles Bloodhound en comparación con el Thunderbird fue su mejor maniobrabilidad. Esto se logró debido a la ubicación de las superficies de control cerca del centro de gravedad. El aumento en la velocidad de giro del cohete en el plano vertical también se obtuvo cambiando la cantidad de combustible suministrado a uno de los motores.

Casi simultáneamente con el SAM Thunderbird Mk. II, la Fuerza Aérea de la Real Fuerza Aérea entró en el Bloodhound Mk. II Este sistema de defensa aérea superó en muchos aspectos a su rival originalmente más exitoso.



El misil antiaéreo del Bloodhound modernizado se hizo 760 mm más largo, su peso aumentó en 250 kg. Debido al aumento en la cantidad de queroseno a bordo y al uso de motores más potentes, la velocidad aumentó a 2.7M y el rango de vuelo hasta 85 km, es decir, casi 2.5 veces. El complejo recibió una nueva y potente guía de radar antiinterferencias del Ferranti Type 86 "Firelight". Existía la posibilidad de rastrear y disparar objetivos a baja altitud.


Radar Ferranti Tipo 86 "Firelight"

En este radar había un canal de comunicación separado con el misil, a través del cual la señal recibida por el jefe de referencia del misil antiaéreo se transmitía al puesto de control. Esto permitió la selección efectiva de objetivos falsos y la supresión de interferencias.

Gracias a la modernización cardinal de los misiles complejos y antiaéreos, no solo aumentó la velocidad de los misiles y el alcance de la destrucción, sino que también aumentó significativamente la precisión y la probabilidad de alcanzar el objetivo.

Al igual que los sistemas de defensa aérea Thunderbird, las baterías Bloodhound sirvieron en Alemania Occidental, pero después de 1975 todos regresaron a su tierra natal, ya que el liderazgo británico decidió una vez más fortalecer la defensa aérea de las islas.

En ese momento, en la URSS, los bombarderos Su-24 comenzaron a ingresar al armamento de los regimientos de bombardeo de primera línea. Según el comando británico, habiendo penetrado a baja altitud, podrían lanzar ataques de bombardeo repentinos sobre objetivos estratégicamente importantes.

Las posiciones fortificadas se equiparon para los sistemas de misiles de defensa aérea Bloodhound en el Reino Unido, mientras que la guía de radar se montó en torres especiales de 15 metros, lo que aumentó la capacidad de disparar a objetivos de baja altitud.

Bloodhound disfrutó de cierto éxito en el mercado extranjero. Los australianos fueron los primeros en recibirlos en 1961, era una variante del Bloodhound Mk I, que sirvió en el Continente Verde hasta 1969. Los siguientes fueron los suecos, que compraron nueve baterías en 1965. Después de que Singapur obtuvo su independencia, los complejos del 65 ° escuadrón de la Royal Air Force permanecieron en este país.




SAM Bloodhound Mk.II en el Museo de la Fuerza Aérea de Singapur

En el Reino Unido, los últimos sistemas de defensa aérea Bloodhound fueron retirados del servicio de combate en 1991. En Singapur, estuvieron en servicio hasta 1990. Los Bloodhounds duraron más tiempo en Suecia, habiendo servido durante más de 40 años, hasta 1999.

Poco después de la adopción de los sistemas de defensa aérea de la Marina Real de Gran Bretaña del sistema de defensa aérea de corto alcance Sea Kat, el comando de las fuerzas terrestres se interesó en este complejo.

Según el principio de funcionamiento y diseño de las partes principales, la variante de tierra, llamada Tigercat (Tigercat inglés - marsupial marten o tigre gato), no difería del sistema de defensa aérea Sea Kat. El desarrollador y fabricante de las versiones terrestres y marítimas del sistema de defensa aérea fue la compañía británica Shorts Brothers. Para adaptar el complejo de acuerdo con los requisitos de las unidades de tierra, Harland participó.

El sistemas de defensa aérea Tigercat: un lanzador con misiles antiaéreos y sistemas de guía se ubicaron en dos remolques que remolcaban vehículos de campo a través de Land Rover. Un lanzador móvil con tres misiles y un puesto de guía de misiles podría viajar en carreteras pavimentadas a velocidades de hasta 40 km / h.


PU SAM Tigercat

En la posición de disparo, el poste de guía y los lanzadores se colgaron de los Tigercats sin separación de la transmisión de la rueda y se conectaron entre sí mediante líneas de cable. La transición de viajar al combate tomó 15 minutos. Al igual que en el sistema de defensa aérea de la nave, se cargaron 68 kg de misiles en los lanzadores manualmente.

En la estación de orientación con el lugar de trabajo del operador, equipado con equipos de comunicación y vigilancia, había un conjunto de equipos informáticos analógicos para generar comandos de guía y una estación para transmitir comandos de radio al cohete.

Al igual que en el complejo marino Sea Cat, el operador de guía, después de la detección visual del objetivo, "capturaba" y guiaba el misil antiaéreo, luego de lanzarlo a través de un dispositivo óptico binocular, controlando su vuelo con la ayuda de un joystick.

Operador de orientación SAM "Tigercat"

Idealmente, la designación del objetivo se llevó a cabo desde el radar de la encuesta de situación en el aire a través del canal de radio VHF o por equipos de observadores ubicados a cierta distancia de la posición SAM. Esto hizo posible que el operador de orientación se preparara para el lanzamiento por adelantado y desplegara el lanzador de misiles en la dirección deseada.

Sin embargo, incluso durante los ejercicios, esto no siempre funcionó, y el operador tuvo que buscar e identificar el objetivo de forma independiente, lo que provocó un retraso en la apertura del fuego. Dado el hecho de que el lanzador de misiles Tigercat voló a una velocidad subsónica, y a menudo se persiguió el disparo, la efectividad del complejo en aviones de combate a reacción no era alta cuando se puso en servicio en la segunda mitad de los años 60.

Después de pruebas bastante largas, a pesar de las deficiencias identificadas, el sistema de misiles de defensa aérea Tigercat fue adoptado oficialmente por el Reino Unido a fines de 1967, lo que causó una gran emoción en los medios británicos, impulsado por el fabricante para pedidos de exportación.


Página en una revista británica con una descripción del sistema de defensa aérea Tigercat


En las Fuerzas Armadas británicas, los sistemas Tigercat se suministraron principalmente a unidades antiaéreas, que anteriormente tenían cañones antiaéreos Bofors de 40 mm en servicio.

Después de una serie de campos de tiro en aviones de destino controlados por radio, el comando de la Fuerza Aérea era bastante escéptico sobre las capacidades de este sistema de defensa aérea. La derrota de los objetivos de alta velocidad y maniobras intensivas era imposible. A diferencia de los cañones antiaéreos, no se podía usar de noche y en condiciones de poca visibilidad.

Por lo tanto, la edad del sistema de defensa aérea Tigercat en las fuerzas armadas británicas, a diferencia de su contraparte naval, fue de corta duración. A mediados de los años 70, todos los sistemas de defensa aérea de este tipo fueron reemplazados por sistemas más avanzados. Incluso el conservadurismo británico, la alta movilidad, el transporte aéreo y el costo relativamente bajo de equipos y misiles antiaéreos no ayudaron.


A pesar de que el complejo estaba desactualizado a principios de los años 70 y no correspondía a las realidades modernas, esto no impidió que vendiera los sistemas de defensa aérea Tigercat retirados del servicio en el Reino Unido a otros países. El primer pedido de exportación vino de Irán en 1966, incluso antes de que el complejo fuera adoptado formalmente en Inglaterra. Además de Irán, los Tigercat fueron adquiridos por Argentina, Qatar, India, Zambia y Sudáfrica.

El uso de combate de este sistema de defensa aérea era limitado. En 1982, los argentinos los desplegaron en las Malvinas. Se cree que lograron dañar a un Sea Harrier británico. Lo cómico de la situación es que los complejos utilizados por los argentinos antes que estaban en servicio en el Reino Unido y después de la venta se usaron contra los antiguos propietarios. Sin embargo, los marines británicos nuevamente los regresaron a su patria histórica, capturando varios sistemas de defensa aérea intactos.

Además de Argentina, el Tigercat fue utilizado en combate en Irán durante la guerra Irán-Iraq. Pero no hay datos confiables sobre los éxitos militares de los cálculos antiaéreos iraníes. En Sudáfrica, que está llevando a cabo hostilidades en Namibia y el sur de Angola, el sistema de defensa aérea Tigercat, que recibió la designación local Hilda, sirvió para proporcionar defensa aérea para bases aéreas y nunca se lanzó para objetivos aéreos reales. La mayoría de los sistemas de defensa aérea de Tigercat fueron retirados del servicio a principios de la década de 1990, pero en Irán continuaron formalmente en servicio al menos hasta 2005.