miércoles, 14 de junio de 2017

Aviones de interdicción: Sukhoi Su-34 Fullback (parte 4)

El avión caza de patrulla/ataque marítimo Su-32FN Fullback 



El Su-32FN es un avión de patrulla marítima, de guerra antisubmarina y un derivado marítimo de ataqué del diseño T-10V único, diseñados para realizar papeles marítimos litorales y costeros. La inclusión de una capacidad ASW en este avión creó mucha discusión durante los años 90, como este papel en el Occidente ha caído tradicionalmente en estructuras de avión derivadas de aviones de pasajeros especializadas. La flota del LRMP soviético abarcó las variantes del Tu-142M Bear y Il-38 May, derivadas del avión de pasajeros de Il-18 Cool. 

Para entender el razonamiento detrás de un avión de caza equipado para ataque ASW es necesario explorar la última doctrina marítima soviética de la Guerra Fría, y la estrategia marítima de la concurrente armada de los EE.UU. Durante este período los soviéticos avisoraron el funcionamiento de la flota de SSBNs equipados con misiles balístico en bastiones cerca a Murmansk/Polyarnyy y Vladivostok, y otros elementos de la flota que defendían los puertos del Báltico y del Mar Negro. En caso de guerra completa con el Occidente, los bastiones, el Báltico y el Mar Negro serían el coto de caza para los SSNs de la Real Armada y la Armada de los E.E.U.U., mientras que el espacio aéreo sería disputado activamente por F-14s de los E.E.U.U. CVBGs y barridos de cazas F-15 con base en tierra de la fuerza aérea de los E.E.U.U. Éste es un ambiente que no es conducente a la longevidad de las turbohélices del LRMP como el Bear y el May. Esto presentó a los soviéticos con genuinas intenciones en la ejecución de patrulla marítima y tareas ASW y una estructura del avión altamente sobrevivible eran una necesidad. Como los bastiones y las aproximaciones a los puertos de Báltico y del Mar Negro estaba cercano a las bases de tierra existentes, un avión de caza grande de ataque podría ofrecer un creíble autonomía para perdurabilidad de estación, donde estaba quizás la durabilidad sería de 30 minutos de horas de vuelo de estación de combate a una pista de aterrizaje. Mientras que una de cuatro horas en autonomía de estación puede ser modesto comparada a una estructura del avion de avión de la turbohélice LRMP, la proximidad a los aviones del relevo que esperan todavía para lanzar hace esto un concepto viable. 

El resultado de estas presiones fue el Su-32FN, ideado para que el AV-MF absorba el papeles de los regimientos del AV-MF Su-24 Fencer, e incluye el "nuevo" papel de ASW. Es esencialmente un equivalente con base en tierra supersónico, de alta supervivencia del Lockheed S-3 Vikingo. 

La desviación principal del básico Su-32MF/34 era la adición de la habitación aviónica de patrulla marítima "Morskaya Zmyeya" (serpiente de mar), ajustada desde entonces en la mejora de aviónica del desplomado Bear F indio de la armada de ese país, y una habitación de ataque marítima y de armas ASW. La habitación se necesitaba para incluir un receptor de dimensiones de apoyo electrónico y un detector de anomalía magnética. 

Para los papeles marítimos "clásicos" de ataque, el Su-32FN debe ser armado con hasta seis Kh-31A o Kh-31R ASMs, seis Kh-35U ASMs, hasta tres misiles ASMs supersónicos stand-off Kh-59M/D, Kh-41 Moskit (Sunburn) y 3M-54 Alpha. 

Las fotografías indican que el adaptador para el afuste central para el Kh-41, desarrollado para el Su-33, sería reutilizado, aunque los mediados de años 90 uno foto divulgaba que podía cargar otros dos en los pilares alares. Los modelos originales del misil Alpha también fueron fotografiados en las estaciones interiores del ala, este misil se han desarrollado desde entonces en la serie 3M-54/3M-14E (SS-N-27) Club. 

Los almacenes más interesantes son torpedos ligeros ASW, llevados en pares en las estaciones 8 y 9, para un total de 4 rondas, y una barquilla conformal del afuste central que se puede cargar con hasta 72 sonoboyas de varios tipos. Una mezcla de armas de patrulla ASW implicaría probablemente una mezcla de estos almacenes, tanques de caída libre y cargas de profundidad. 

Desemejante de las variantes convencionales de ataque Su-34, el Su-32FN tiene todavía que ser entrado en producción. 

 
 
 
Su-34 Fullback (imagen de NAPO) 
 

Prototipo Su-27KUB (Sukhoi) 

martes, 13 de junio de 2017

Bombardero pesado: Bolkhovitinov DB-A (URSS)




Bombardero pesado Bolkhovitinov DB-A

El Bolkhovitinov DB-A fue un proyecto de bombardero pesado para las Fuerzas Aéreas soviéticas y uno de los primeros en aquel país en tener el fuselaje construido en estructura monocasco.




Historia y diseño

Victor Bolkhovitinov , profesor de diseño aeronáutico en la Academia Militar del Aire Zhukovsky a finales de los años treinta, fue el responsable del proyecto Blolkhovitinov DB-A (Dalnii Bombardirovschik-Akademia) , al frente de un amplio equipo de diseño. Se trataba de un proyecto para un bombardero pesado cuatrimotor, producido bajo las mismas especificaciones que dieron por resultado el celebrado ANT-42 , que fue fabricado en serie como TB-7.



El DB-A fue uno de los primeros aviones soviéticos caracterizados por un fuselaje de estructura monocasco con revestimiento resistente, aunque en otros aspectos, el modelo no era muy avanzado; se trataba de un monoplano de ala media de construcción metálica, con los estabilizadores bajos, acomodo ampliamente acristalado para una tripulación de ocho personas, propulsión mediante cuatro motores lineales limpiamente carenados, y una disposición del tren de aterrizaje semirretráctil, de modo que las ruedas principales se alojaban en el interior de unos inmensos "pantalones" dispuestos bajo el par de motores más interiores.



El primer prototipo realizó su primer vuelo en el verano de 1936, estableciendo cuatro impresionantes récords mundiales a lo largo de los siguientes meses: trepada con una carga útil de 10.000 kg hasta los 7.032 m; trepada con una carga útil de 13.000 kg hasta los 4.535 m; y una distancia de 2.002.6 km cubierta a una velocidad media de 280 km/h con una carga útil de 5.000 kg.



El segundo prototipo (DB-2A) , con motores Mikulin AM-34 RNV, 11 tripulantes y un peso máximo en despegue de 24.000 kg, podía alcanzar los 340 km/h a 6.000 m. Las pruebas resultaron satisfactorias, y en 1937-38 se entregó una serie corta (cinco unidades de las 12 en fabricación) de DB-A provistos de motores sobrealimentados AM-34FRN-TK; pero luego se abandonó cualquier posterior desarrollo en favor del ANT-42.

Especificaciones técnicas



Tipo: prototipo de bombardero pesado de ocho plazas
Planta motriz: cuatro motores lineales M-34RN de 970 cv
Prestaciones
velocidad máxima: 330 km/h a 4.000 m
velocidad de crucero: 290 km/h a 4.000 m
techo de vuelo: 7.220 m
autonomía: 2.000 km
Pesos
vacío: 15.400 kg
máximo en despegue: 21.900 kg
Dimensiones
envergadura: 39,50 m
longitud: 24,40 m
superficie alar: 230 m²
Armamento (propuesto)
un cañón ShVAK de 20 mm
cuatro ametralladoras ShKAS de 7,62 mm
una carga de hasta 3.000 kg de bombas

lunes, 12 de junio de 2017

Entrenador avanzado: McDonnell Douglas/BAE T-45 Goshawk (UK/USA)



McDonnell Douglas/BAE T-45 Goshawk



El McDonnell Douglas T-45 Goshawk es un reactor de entrenamiento biplaza, siendo una variante del avión de entrenamiento BAE Hawk. El T-45 se fabricó conjuntamente por las compañías estadounidense McDonnell Douglas (posteriormente integrada en Boeing) y la británica British Aerospace (posteriormente denominada BAE Systems).


Diseño

Es un avión de entrenamiento especialmente diseñado para operar desde la cubierta de un portaaviones, tiene un tren de aterrizaje alto y reforzado, el tren de aterrizaje delantero tiene doble rueda y se guarda bajo la cabina de mando, el tren de aterrizaje principal se despliega bajo las alas, en forma similar al caza pesado McDonnell Douglas F-4 Phantom II.


Variantes

T-45A
Versión inicial para la Armada de los Estados Unidos, con capacidad para operar desde portaaviones.
T-45B
Versión propuesta, para ser empleada exclusivamente en tierra. Básicamente se trataba de un BAE Hawk con la aviónica del T-45A. Se acabó desechando esta variante a favor de modernizar los TA-4J y T-2C por ser una opción menos costosa.
T-45C
Versión con mejoras en el Head-up display así como con cabina de cristal. Todos los T-45A se modificaron a la variante T-45C.2



Especificaciones (T-45A)



Características generales
Tripulación: 2 (estudiante e instructor)
Longitud: 11,99 m
Envergadura: 9,39 m
Altura: 4,08 m
Superficie alar: 17,7 m²
Peso vacío: 4.460 kg
Peso máximo al despegue: 6.387 kg
Planta motriz: 1× turbofán Rolls-Royce Turbomeca F405-RR-401.
Empuje normal: de empuje.
Rendimiento
Velocidad máxima operativa (Vno): 1 038 km/h (645 MPH; 560 kt)
Alcance: 1 288 km (695 nmi; 800 mi)
Techo de vuelo: 12 900 m (42 323 ft)
Régimen de ascenso: 40,6 m/s (7 992 ft/min)




domingo, 11 de junio de 2017

MPA: Avro 696 Shackleton (UK)


Avro 696 Shackleton
Wikipedia




El Avro 696 Shackleton era un avión de patrulla marítima de la Royal Air Force (RAF) desarrollado a partir del Avro Lincoln, aunque tenía un nuevo fuselaje. Al principio se lo utilizó para misiones de guerra antisubmarina (ASW) y de patrulla marítima (MPA), luego se lo adaptó para realizar misiones de alerta temprana aerotransportada (AEW) y de búsqueda y rescate (SAR) desde 1951 hasta 1990. El Shackelton también prestó servicio en la Fuerza Aérea de Sudáfrica desde 1957 a 1984. El avión lleva la denominación de Shackelton en honor al explorador polar Ernest Shackleton.




Desarrollo

El avión fue diseñado por Roy Chadwick como el Avro Tipo 696. Estaba basado en el exitoso bombardero de la Segunda Guerra Mundial Avro Lancaster (también diseñado por Chadwick) y de su derivado el Avro Lincoln, que en ese entonces era el avión ASW de la RAF. El nuevo diseño tomó las alas y el tren de aterrizaje del Lincoln y las unió a un nuevo fuselaje, que inicialmente fue denominado Lincoln ASR. Los motores eran cuatro Rolls-Royce Griffon, que impulsaban hélices contra rotatorias de 4 metros de diámetro, creando un distintivo sonido del motor y añadiendo la sordera a los peligros que debían enfrentar los tripulantes del avión. El primer vuelo de pruebas tuvo lugar en marzo de 1949, el primer avión de serie fue entregado al Mando Costero en abril de 1951 y tuvo su bautismo de fuego durante la Crisis de Suez. En misiones ASW, el Shackelton cargaba dos tipos de sonoboyas, ESM, un detector de diesel Autolycus y por un corto periodo de tiempo un MAD (detector de anomalías magnéticas). Además podía llevar hasta nueve bombas de caída libre, o tres torpedos, o bombas de profundidad y estaba armada con un cañón Hispano de 20 mm.



El MR.2 fue una variante mejorada que intentó aplicar todos los conocimientos aprendidos durante las operaciones. El radomo fue cambiado de lugar, desde la trompa a una posición ventral, con el objetivo de minimizar el riesgo de impacto de aves. Tanto la sección delantera del fuselaje como la trasera fueron alargadas, los estabilizadores fueron rediseñados y el débil tren de aterrizaje fue reforzado.



La MR.3 fue otra versión mejorada en respuesta a las quejas de las tripulaciones. Fue introducido un tren de aterrizaje triciclo, se agrandó el fuselaje y se rediseñaron los alerones y los tanques de combustible en las puntas de las alas. Debido a que las tripulaciones debían soportar misiones de 15 horas, se mejoró el aislante acústico y se agregó una pequeña cocina y un espacio para dormir. El peso máximo de despegue subió hasta los 13.600 kg (Ph. III) y en despegues JATO se utilizaba la asistencia de un turbojet Armstrong Siddeley Viper Mk.203. Esta presión adicional afectó negativamente a la estructura del avión, lo que redujo tanto la vida de vuelo de los Mk. III que fueron retirados mucho antes que los Mk. II.



Todas las variantes sufrieron la utilización del motor Griffon —sediento de aceite y combustible, ruidoso y temperamental y con una necesidad de mantenimiento muy elevada. Era usual ver un motor siendo cambiado cada día en una unidad de 6 aviones. Siempre existieron planes para cambiarlos, pero incluso la prometedora remotorización con motores Napier Nomad nunca sucedió.



La necesidad de reemplazar el Shackelton apareció a principios de la década de 1960 y comenzó a ser una realidad con el arribo de los Hawker-Siddeley Nimrod en 1969. Esto fue el fin del Shackelton, aunque se lo siguió utilizando como avión SAR hasta 172. La intención de retirar a los Shackelton fue paralizada por la necesidad de cobertura AEW en el Mar del Norte y en el Atlántico Norte debido a la puesta fuera de servicio de los Fairey Gannet. Como el reemplazo del Gannet recién iba a estar disponible a fines de la década de 1970, se instaló de manera provisoria un radar AN/APS-20 en varios MR.2 en 1972, denominándolos AEW.2. El desarrollo del desastroso Nimrod AEW, que debía reemplazar a los AEW.2, se fue retrasando cada vez más y el eventual sucesor del Shackelton no arribó hasta que la RAF se decidió, en 1991, por comprar el E-3 Sentry y abandonar el Nimrod AEW.



Un total de 185 Shackelton fueron construidos desde 1951 hasta 1958. Se cree que 12 están intactos y uno está volando hoy en día.




Variantes


Shackleton GR.1: fue la primera versión de producción para la RAF. Luego fue denominado Shackleton MR.1.
Shackleton MR.1A: versión equipada con motores Griffon 57ª, junto con un radomo montado en la trompa. En servicio desde abril de 1951.
Shackleton MR.2: versión con la nariz alargada. El radomo del MR.1A fue trasladado a una posición ventral.
Shackleton MR.2C: denominación otorgada a algunos Shackleton MR.2 que estaban equipados con equipos de navegación y de armas del Shackleton MR.3.
Shackleton MR.3: versión de reconocimiento marítimo y antibuque. El tren de cola fue reemplazado por uno triciclo. Fue equipada con tanques auxiliares en las puntas de las alas. Ocho ejemplares fueron exportados a Sudáfrica.
Shackleton MR.3 Phase 2: similar al Shackleton MR.3, pero equipado con dos turboreactores Armstrong Siddeley Viper para los despegues asistidos.
Shackleton MR.4: proyecto jamás construido
Shackleton AEW.2: avión de alerta temprana. Eran MR.2 modificados para poder cargar el radar de los Fairey Gannet.
Shackleton T.4: versión de entrenamiento. Varios ejemplares convertidos







Especificaciones


Características generales

Tripulación: 10
Longitud: 26,6 m (87,3 ft)
Envergadura: 36,6 m (120 ft)
Altura: 5,3 m (17,5 ft)
Superficie alar: 132 m² (1 420,9 ft²)
Peso vacío: 23 300 kg (51 353,2 lb)
Peso cargado: 39 000 kg (85 956 lb)
Planta motriz: 4× 12 cilindros en "V" Rolls-Royce Griffon.
Potencia: 1 442 kW (1 933 HP; 1 960 CV) cada uno.
Hélices: 2× tripala por motor.
Diámetro de la hélice: 4 000 mm

Rendimiento

Velocidad máxima operativa (Vno): 480 km/h (298 MPH; 259 kt)
Alcance: 3 620 km (1 955 nmi; 2 249 mi)
Techo de vuelo: 6 200 m (20 341 ft)
Carga alar: 295 kg/m² (60,4 lb/ft²)

Armamento

Puntos de anclaje: 1 bahía interna con una capacidad de 4.500 kg, para cargar una combinación de:
Otros: bombas, torpedos y cargas de profundidad








sábado, 10 de junio de 2017

UAV: Sistema Aéreo Robótico Argentino (SARA)

Drones “made in Argentina”

El Sistema Aéreo Robótico Argentino (SARA) abre una nueva posibilidad para que nuestro país se sume al escenario global en materia de aviones no tripulados como dueño de la tecnología. Por Patricia Fernández Mainardi
DEF Online


 Foto: INVAP


En la actualidad, hay dos proyectos motorizados por el Estado, específicamente por el Ministerio de Defensa, para el desarrollo en Argentina de vehículos aéreos no tripulados (VANTs): los clase I, como el P35 y Lipán, y el sistema SARA, conformado por VANTs clases II y III, y un paquete de tecnologías habilitantes para el diseño de un blanco aéreo de alta velocidad (BAAV).
Ambos proyectos cubren toda la gama de requerimientos para VANTs en función de su  tamaño, capacidad de carga útil, autonomía de vuelo y usos posibles. En este sentido, los desarrollos de esta tecnología tendrán aplicación dual, es decir tanto en ámbitos civiles como militares.

Tal como sostienen desde Fabricaciones Militares, el desarrollo en Argentina de esta tecnología es una decisión política que reforzará la soberanía nacional y el desarrollo federal, ya que los VANTs permiten obtener una visión macro del territorio y el espacio aéreo en tiempo real para facilitar la toma de decisiones en todas las áreas.

Desarrollo estratégico

Básicamente, se trata de una inversión histórica que posibilitará la producción en serie de una tecnología estratégica que permitirá no solo abastecer al mercado local, sino también abrir nuevos mercados para la exportación de productos tecnológicos de alto valor agregado.

Además, el desarrollo de estos proyectos gravitará positivamente sobre todo el sistema científico-tecnológico-industrial nacional por varios motivos: integrará el know-how del sistema científico-tecnológico nacional con las capacidades productivas instaladas del Polo Industrial-Tecnológico para la Defensa; integrará desarrollos y conocimientos existentes en tecnologías complejas como radares, telecomunicaciones, sensores, procesamiento de datos y navegación; impulsará el salto tecnológico no solo por el desarrollo de las aeronaves sino también de las cargas útiles, dispositivos que permiten que el vehículo cumpla su objetivo específico; y desarrollará la industria argentina y sus cadenas de valor.

Fabricaciones Militares y la Fábrica Argentina de Aviones fabricarán los sistemas de la mano de pymes e institutos científico-tecnológicos nacionales. Esto ayudará a fomentar la consolidación y el crecimiento de la cadena de proveedores tecnológicos locales en materia de seguridad y defensa; impulsará la ingeniería nacional con inversiones concretas en investigación y desarrollo a través de las empresas e institutos del Polo Industrial-Tecnológico para la Defensa y del Complejo Tecnológico-Industrial argentino en su totalidad; y potenciará el desarrollo científico-tecnológico nacional a partir de la sinergia con las universidades y los centros científicos de todo el país.

Esta tecnología transformará la manera en que se realizan en el país las tareas de búsqueda y rescate, ya que acortará los tiempos de respuesta y ampliará el tamaño de las superficies relevadas de forma remota. Junto con ello, en caso de emergencias y catástrofes, brindará un relevamiento preciso en tiempo real de las zonas afectadas. Además, permitirá el monitoreo de cultivos y será de gran utilidad para el resguardo de los recursos naturales, ya que hará posible controlar la actividad pesquera ilegal y vigilar los activos hidrocarburíferos nacionales.

El P35 y el LIPAN 

Este primer proyecto está siendo llevado adelante entre la Fábrica Argentina de Aviones (FAdeA) y Fabricaciones Militares. Consiste en la producción en serie de VANTs clase I a partir de dos sistemas que había desarrollado el Ejército, el P35 y el LIPAN. Ambos proyectos provienen de un requerimiento operativo del Estado Mayor Conjunto y fueron concebidos inicialmente en el seno del Ejército argentino. Los dos sistemas pertenecen a la clasificación de UAV clase I hasta 150 kg y están destinados a la obtención de información para uso de relevamiento de terreno e información de inteligencia dentro del ambiente militar.

FAdeA y Fabricaciones Militares, en conjunto con las unidades operativas del Ejército, de la Armada y de Fuerza Aérea, y con la colaboración del Estado Mayor Conjunto –que es quien nuclea los requerimientos de las tres fuerzas–, están llevando a cabo el trabajo. Además, para la producción de este sistema, FAdeA está desarrollando una red de proveedores nacionales, de componentes y software. Tanto el P35 como el LIPAN están fabricados en material compuesto, algunas partes son de carbono y otras de fibra de vidrio.

El P35 es un sistema de aviones no tripulados de reconocimiento cercano, diurno, y tiene la particularidad de que está diseñado para ser transportado en campo abierto por dos personas, en mochilas –es un sistema transportable– y puede ser desplegado en cualquier zona, armado rápidamente y lanzado a mano sin necesidad de ningún otro sistema. Tiene 1,40 m de envergadura, pesa 5 kg y puede llevar una carga útil de 1 kg. El motor es eléctrico y puede volar a 400 m de altura.

Por su definición y su concepción, el P35 es un sistema de reconocimiento de avanzada y le permite a una patrulla avanzada de una fuerza armada adentrarse en un terreno que no está controlado y poder tener observación, imágenes y video en tiempo real, de hasta 10 km más adelante, para ver la situación del potencial enemigo que se encuentre en esa zona y hacer un relevamiento.

Está diseñado para ser transportado y operado por dos personas, que es el componente mínimo de patrulla que podría adentrarse en un terreno enemigo. Una vez que está puesto en operación, las dos personas pueden mimetizarse en el terreno, porque tiene piloto automático y todo un plan de vuelo, que se realiza de forma automática, además de una autonomía de una hora, con lo cual el sistema puede estar enviando datos de imágenes, fotos y video en tiempo real, para que la patrulla pueda analizar y retransmitir la información durante esa hora de autonomía.

Los sistemas no tripulados también tienen un gran potencial de uso en el ámbito civil. En particular, el P35, por ser un elemento portátil, con una autonomía de una hora y un alcance de 10 km, permite monitorear cualquier situación de desastre natural, así como cualquier tarea de búsqueda y rescate. En campo abierto sin recursos especiales para poner en marcha un sistema de observación, permite ser desplegado rápidamente, operado con dos personas y tener información en tiempo real de la situación que uno quiera observar: incendios, inundaciones, búsquedas, accidentes. Toda esa información es posible verla y obtenerla en tiempo real con este tipo de sistemas.

El LIPAN es el segundo proyecto en el que trabaja FAdeA. Este es el sistema no tripulado de más uso que tiene el Ejército argentino; lleva una década prácticamente de operación. Fue concebido en el sector de inteligencia del Ejército, y se utilizó en forma pionera dentro de la región, para hacer las primeras experiencias de utilización y de concepto de utilización de un sistema de observación no tripulado. A lo largo de los años fueron desarrollando distintas capacidades, y en el año 2014, por decisión del Ministerio de Defensa, se lanzó el proyecto de convertir el sistema LIPAN en una producción seriada y certificada. Allí es donde FAdeA y Fabricaciones Militares llegaron a un acuerdo de trabajo para poder trasladar los conceptos de diseño que tenían del LIPAN, optimizarlos y llevarlos a un nivel de producción seriada y sostenible en el tiempo.

El LIPAN tiene características diferentes del P35, tanto por su tamaño y su alcance, como por la misión para la que fue concebido. El LIPAN ya tiene una envergadura de cerca de 4,5 m,  un alcance que ronda entre los 70 y los 100 km, y en la actualidad pesa 70 kg, pero el proyecto contempla reducir su peso. Su carga útil es de unos 10 kg; la autonomía es de alrededor de 4 horas, y eso le permite ser operado desde una pista, un terreno no preparado, pero con mayor necesidad de personal para poder operarlo. Las ventajas que tiene son una mayor autonomía y un mayor alcance, con lo cual permite adentrarse mucho más en un terreno conocido o no, dependiendo si estamos hablando de una utilización de defensa o una utilización civil. Además, dentro de la carga de sensores que lleva, hoy tiene una cámara estabilizada, pero también cuenta con la posibilidad de incorporar una cámara térmica para visión nocturna. Esto ya le permite dar realmente otros usos y otras posibilidades de vigilancia y de patrulla, en zonas fronterizas, en grandes extensiones, en zonas costeras. Las aplicaciones realmente son muchas y variadas.

Sistema Aéreo Robótico Argentino (SARA)

Para el proyecto SARA, iniciativa del gobierno nacional en el año 2010, el Ministerio de Defensa convocó a INVAP para que trabaje, dados los antecedentes que tiene esa empresa para colaborar en proyectos multidisciplinarios. Ese año se firmó un acuerdo marco y durante dos años se trabajó con todas las Fuerzas Armadas, incluyendo también a las de Seguridad, con la idea de fijar los requerimientos y especificaciones que tiene que tener este tipo de aeronaves y desarrollar un producto cuya plataforma sea de utilidad para todas las fuerzas armadas y de seguridad, con las variantes que cada una pueda introducir en razón de su actividad específica. Finalmente, el contrato definitivo entre el Ministerio de Defensa e INVAP se concretó en el mes de marzo con las firmas correspondientes.

El proyecto SARA representa una inversión de más de 2095 millones de pesos y supone el avance del país en el emergente campo de los vehículos aéreos no tripulados, también conocidos como UAV, a través del desarrollo y fabricación nacional de prototipos operativos clase II y III, y de un paquete de tecnologías habilitantes para el diseño de un blanco aéreo de alta velocidad (BAAV).

Los VANTs clase II serán construidos utilizando materiales compuestos. Cabe señalar que se usará un motor a pistón de desarrollo nacional. Podrán llevar hasta 50 kg de carga útil, con 12 horas de autonomía y hasta 150 km de alcance.

La carga útil va a estar constituida por un sensor electroóptico consistente en un cabezal con cámaras divididas en diferentes tipos: aquellas que permiten obtener imágenes visibles y otras que habilitan la observación de imágenes infrarrojas. Los registros podrán ser transmitidos a tiempo, mientras que en tierra se dispondrá de un sistema que permite su análisis, procesamiento y distribución a los diferentes interesados. También contarán con  un sistema de piloto automático que va a permitir el vuelo autónomo y con un sistema de control en tierra  para manejar estos VANTs e indicarles el lugar por el que deben volar.

Los vehículos cumplirán tareas de vigilancia en zonas de frontera e incorporarán una plataforma de sensores electroópticos (ya desarrollada por INVAP para la Armada Argentina en el marco del proyecto SADI, Sistema de Adquisición de Imágenes).

Por otro lado, los vehículos no tripulados clase III serán bimotores y utilizarán una motorización turbohélice. La diferencia esencial con los clase II es que los clase III son aeronaves más grandes y de mayor carga útil (hasta 250 kg de carga útil, 20 horas de autonomía y hasta 1200 km de alcance). Otra diferencia  tiene que ver con los sensores que pueden cargar: los VANTs clase III podrán llevar un sensor radar que va a permitir contar con información desde tierra con independencia de fenómenos que obstaculicen la visión, como por ejemplo la cobertura de nubes, ya que el radar es capaz de trabajar en condiciones en las cuales las imágenes  no lo  permiten. También tendrán la posibilidad de operar más allá del alcance de su estación de control terrena, a través de enlaces satelitales o utilizando otros VANTs de la misma clase como retransmisores. Además, cargarán radares que les permitirán cumplir con sus tareas primarias, en la vigilancia de los límites del mar argentino y como complemento de los radares 3D que se están fabricando en nuestro país, monitoreando los “conos de sombra” producidos por la propia curvatura de la Tierra.

En lo que respecta al paquete de tecnologías habilitantes para el diseño de un blanco aéreo de alta velocidad (BAAV), la técnica se utilizará para el entrenamiento de las Fuerzas Armadas y deberá ser reutilizable al menos en 20 ocasiones. Contempla el desarrollo de un motor que alcance los 900 km/h y esté acondicionado para operar en ambientes navales. Además, puede ser programado y reprogramado en vuelo, y tener la capacidad de retornar al punto de origen o abortar su vuelo en caso de perder comunicación o sufrir alguna falla en el sistema de control.

Cabe señalar que el proyecto SARA prevé diferentes instancias. En la primera fase, consistente en el diseño y desarrollo, intervienen diversos actores, tales como la Secretaría de Ciencia, Tecnología y Producción para la Defensa, coordinadora y articuladora de las capacidades industriales y el desarrollo de proveedores; INVAP, contratista y principal responsable del desarrollo; CITEDEF y el Instituto Universitario Aeronáutico (Córdoba), ambos como participantes de la investigación y del desarrollo; el Estado Mayor Conjunto de las Fuerzas Armadas, con sus Direcciones de Investigación y Desarrollo y requerimiento operativo; y por último, diversas universidades nacionales y pymes argentinas.

Esta primera etapa contempla la ingeniería de requerimientos funcionales y no funcionales de los sistemas y subsistemas, la definición de la solución técnica en materia de diseño (ingeniería básica) y la ingeniería de detalle, que incluye la generación de prototipos MET –modelos de evaluación tecnológica– para las pruebas de factibilidad y suficiencia de las tecnologías aplicadas.

Por su parte, la segunda fase del proyecto SARA sienta las bases de la transferencia completa de la tecnología del producto a Fabricaciones Militares y a FAdeA, lo que incluye la totalidad de documentos de la ingeniería básica y de detalle, herramientas, máquinas y otros elementos físicos de soporte productivo para la reproducción de los prototipos.

La propiedad intelectual, el know-how, la ingeniería y la comercialización de los VANTs clase II y III se entregarán a FAdeA, mientras que la propiedad intelectual del paquete de tecnologías habilitantes para el diseño de un blanco aéreo de alta velocidad (BAAV) se entregará a Fabricaciones Militares.

Por último, ya en una tercera etapa del SARA, el desarrollo de las líneas de producción y la fabricación en serie de los elementos respectivos a los VANT clase II y III quedarán en manos de la empresa aeronáutica FAdeA, mientras que Fabricaciones Militares será responsable de lo propio con los elementos correspondientes a la tecnología habilitante para el blanco aéreo. Junto con ellos, de esta etapa participaran pymes argentinas en la provisión de partes e insumos.